Tracking算法:Discriminative Correlation Filter (DCF)

基本框架

Minimum Output Sum of Squared Error Filter (MOSSE)

t个目标区域样本分别为 f1,f2,,ft ,通过滤波器 ht ,期望输出 gi (通常为二维高斯函数,峰值位于目标区域中心),最小化均方误差:

Ht 求导,令导数为0,得:


对于t+1帧,假设其在第t帧的目标区域内提取得到特征图z,那么计算 ht 与z的相关值

y的最大值的位置即被认为是t+1帧中目标区域的中心点.
我们保持目标区域尺寸不变,将其中心点进行移动相应位置,就得到了在新帧中的目标区域。对该区域进行特征提取,然后加入到训练集中对模型进行更新得到 ht+1 后,即可进行下一帧
中的目标检测了。

在实际的tracking过程中,一般使用如下方法来更新模型:

其中 η 为学习率。

缺点

  • 只使用了灰度作为特征,模型所使用的特征维数太低,难以很好地反映目标的特性。
  • 只估算了目标区域中心点在帧间的平移运动,而没有考虑目标在运动过程中反映在画面上的尺度变化,在目标尺度发生改变时难以适应。

Discriminative Scale Space Tracking Filter (DSST)

对MOSSE的改进:

  • 使用fHoG替代灰度(通常fHoG为31dims,而DSST实际使用28dims)
  • 考虑目标尺度变化

不考虑尺度变化

设特征维数为d,则特征图可记作 fl,l=1,2,,d 。滤波器应和特征图匹配,误差函数:

引入 λ 项是为了控制滤波器频域参数求解过程中的除0,另一方面也可以控制滤波器参数变化范围, λ 越小,滤波器参数变化范围越大。
对上式做傅里叶变换,求导,令导数为0,得:

在实际操作中,可以用下式更新模型:

新帧预测:

考虑尺度变化

滤波器和特征图由 d×M×N 改为 d×M×N×S ,S = num of scales,即构造金字塔。这导致复杂度增大为 O(dMNS×logMNS)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值