如何正确使用.backward(gradient)中的gradient,自定义gradient参数?

这两块代码主要区别在于调用 `backward()` 方法时传递的参数不同,从而导致计算出的梯度 `x.grad` 不同。让我们逐步分析每段代码:

第一段代码

 
x=torch.randn(2,requires_grad=True)
y=x*x+3
out=y.mean()
out.backward()
print(x.grad)
 
#输出    tensor([0.0038, 1.2940])

1. x = torch.randn(2, requires_grad=True):生成一个有 2 个随机数的张量 x,并且开启梯度计算。
2. y = x * x + 3 :计算 y,其中 y 的每个元素是 x 的对应元素平方加 3。
3. out = y.mean() :计算 y 的平均值。
4. out.backward() :对 out 进行反向传播,自动计算所有参数的梯度。因为 out 是一个标量 ( y 的平均值),所以不需要传递任何参数。

在这段代码中,y 的导数是2*x,由于 y 的平均值的链式法则导数为 1/2,所以 x.grad 是 x 的每个元素的 1/2 倍。

第二段代码

x=torch.randn(2,requires_grad=True)
y=x*x+3
gradient=torch.tensor([0.1, 1.0], dtype=torch.float)
y.backward(gradient)
print(x.grad)
 
 
##输出为 tensor([-0.1502,  2.4981])

1. x = torch.randn(2, requires_grad=True) :生成一个有 2 个随机数的张量 x ,并且开启梯度计算。
2. y = x * x + 3 :计算 y ,其中 y 的每个元素是 x 的对应元素平方加 3。
3. gradient = torch.tensor([0.1, 1.0], dtype=torch.float) :定义一个自定义的梯度张量 gradient 。
4. y.backward(gradient) :对 y 进行反向传播,使用 gradient 作为 y 的自定义梯度。这意味着 y  的每个元素的梯度将分别乘以 gradient 中对应的元素。

在这段代码中,y 的导数仍然是 2*x。由于我们传递了 gradient,所以 x.grad 是 2*x 乘以 gradient 中的对应元素。

总结来说:

- 第一段代码中的 out.backward() 自动计算 y.mean() 对 x 的梯度; 第二段代码中的 y.backward(gradient) 使用自定义梯度 gradient 来计算 y 对 x 的梯度。因此,梯度的具体值会因为使用的 gradient 参数不同而有所变化。

- 当输入 x 是向量,输出 y 是标量时,在 x 上的梯度是一个向量,这时不需要gradient参数。 当输入 x 是向量,输出 y 是向量时, y 在 x 上的梯度是一个雅可比矩阵。

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值