矩阵分解
不同角度,加法或者乘法分解分类,这里采用不同矩阵关系的分解。
等价关系
P
A
Q
=
B
o
r
A
=
P
Λ
Q
PAQ=B or A=P\Lambda Q
PAQ=BorA=PΛQ,
Λ
\Lambda
Λ是等价标准型
1.秩1分解,
A
=
∑
A
i
,
R
(
A
i
)
=
1
A=\sum A_i,R(A_i)=1
A=∑Ai,R(Ai)=1
P
[
E
r
0
0
0
]
Q
=
∑
i
r
P
i
∗
Q
i
P\begin{bmatrix} E_r &0\\0&0 \end{bmatrix}Q=\sum_i^r P_{i}*Q_{i}
P[Er000]Q=i∑rPi∗Qi
2.可逆幂等分解,
A
=
B
C
,
A
为
方
阵
A=BC,A为方阵
A=BC,A为方阵
A
=
P
Λ
Q
⇒
B
=
P
∗
Q
,
C
=
Q
−
1
∗
Λ
∗
Q
A=P\Lambda Q\Rightarrow B=P*Q,C=Q^{-1}*\Lambda*Q
A=PΛQ⇒B=P∗Q,C=Q−1∗Λ∗Q
3.小秩分解
[
E
r
0
0
0
]
=
[
E
r
1
0
0
0
]
∗
[
E
r
2
0
0
0
]
\begin{bmatrix} E_r &0\\0&0 \end{bmatrix}=\begin{bmatrix} E_{r1} &0\\0 &0 \end{bmatrix}*\begin{bmatrix} E_{r2} &0\\0&0 \end{bmatrix}
[Er000]=[Er1000]∗[Er2000]
4.满秩分解,
A
=
U
∗
V
,
U
,
V
为
行
列
满
秩
阵
A=U*V,U,V为行列满秩阵
A=U∗V,U,V为行列满秩阵
[
E
r
0
0
0
]
=
[
E
r
0
]
∗
[
E
r
0
]
\begin{bmatrix} E_r &0\\0&0 \end{bmatrix}=\begin{bmatrix} E_r \\0 \end{bmatrix}*\begin{bmatrix} E_r &0 \end{bmatrix}
[Er000]=[Er0]∗[Er0]
相似关系
一般相似
A = Q − 1 B Q , A=Q^{-1}BQ, A=Q−1BQ,
Jordan相似
1.对角幂零分解,
A
=
B
+
C
,
B
C
=
C
B
A=B+C,BC=CB
A=B+C,BC=CB
A
=
Q
J
Q
−
1
,
J
i
=
B
i
+
C
i
,
B
i
对
角
,
C
i
幂
零
A=QJQ^{-1},J_i=B_i+C_i,B_i对角,C_i幂零
A=QJQ−1,Ji=Bi+Ci,Bi对角,Ci幂零
2.Jordan分解, Q − 1 A Q = J Q^{-1}AQ=J Q−1AQ=J
3.Voss分解,
A
=
B
C
A=BC
A=BC
任
一
复
方
阵
可
以
分
解
为
两
对
称
阵
之
积
,
且
一
个
可
逆
任一复方阵可以分解为两对称阵之积,且一个可逆
任一复方阵可以分解为两对称阵之积,且一个可逆
任
一
可
逆
阵
可
分
解
为
正
定
正
交
之
积
且
唯
一
任一可逆阵可分解为正定正交之积且唯一
任一可逆阵可分解为正定正交之积且唯一
LEMMA:
K
=
K
T
=
K
−
1
,
K
为
置
换
阵
(
对
称
正
交
)
K=K^T=K^{-1},K为置换阵(对称正交)
K=KT=K−1,K为置换阵(对称正交)
A
=
Q
J
Q
−
1
,
B
=
Q
∗
J
K
∗
Q
T
,
C
=
Q
−
T
K
Q
−
1
A=QJQ^{-1},B=Q*JK*Q^T,C=Q^{-T}KQ^{-1}
A=QJQ−1,B=Q∗JK∗QT,C=Q−TKQ−1
合同关系
A
=
Q
T
B
Q
,
A=Q^{T}BQ,
A=QTBQ,
1.Cholesky,
A
=
L
∗
L
T
A=L*L^T
A=L∗LT,对称正定矩阵A
2.平方分解
.
A
=
B
2
.A=B^2
.A=B2,对称正定矩阵A
3.可逆幂等分解,
A
=
B
C
,
A
为
方
阵
,
B
对
称
A=BC,A为方阵,B对称
A=BC,A为方阵,B对称
A
=
P
Λ
Q
⇒
B
=
P
∗
Q
,
C
=
Q
−
1
∗
Λ
∗
Q
A=P\Lambda Q\Rightarrow B=P*Q,C=Q^{-1}*\Lambda*Q
A=PΛQ⇒B=P∗Q,C=Q−1∗Λ∗Q
Other分解
1.Trace迹分解
A
=
B
+
C
,
t
r
(
C
)
=
0
A=B+C,tr(C)=0
A=B+C,tr(C)=0
2.SVD谱分解
A
=
S
V
D
,
V
为
奇
异
值
矩
阵
,
S
,
D
正
交
矩
阵
A=SVD,V为奇异值矩阵,S,D正交矩阵
A=SVD,V为奇异值矩阵,S,D正交矩阵
3.LU分解
A
=
L
U
,
L
,
U
为
三
角
矩
阵
,
G
a
u
s
s
消
元
法
得
到
A=LU,L,U为三角矩阵,Gauss消元法得到
A=LU,L,U为三角矩阵,Gauss消元法得到
5.QR分解
A
=
Q
R
,
Q
正
交
,
R
上
三
角
A=QR,Q正交,R上三角
A=QR,Q正交,R上三角
6.对称反对称分解, A = ( A + A T ) / 2 + ( A − A T ) / 2 A=(A+A^T)/2+(A-A^T)/2 A=(A+AT)/2+(A−AT)/2