矩阵分解

矩阵分解

不同角度,加法或者乘法分解分类,这里采用不同矩阵关系的分解。

等价关系

P A Q = B o r A = P Λ Q PAQ=B or A=P\Lambda Q PAQ=BorA=PΛQ, Λ \Lambda Λ是等价标准型
1.秩1分解, A = ∑ A i , R ( A i ) = 1 A=\sum A_i,R(A_i)=1 A=Ai,R(Ai)=1
P [ E r 0 0 0 ] Q = ∑ i r P i ∗ Q i P\begin{bmatrix} E_r &0\\0&0 \end{bmatrix}Q=\sum_i^r P_{i}*Q_{i} P[Er000]Q=irPiQi
2.可逆幂等分解, A = B C , A 为 方 阵 A=BC,A为方阵 A=BCA
A = P Λ Q ⇒ B = P ∗ Q , C = Q − 1 ∗ Λ ∗ Q A=P\Lambda Q\Rightarrow B=P*Q,C=Q^{-1}*\Lambda*Q A=PΛQB=PQ,C=Q1ΛQ
3.小秩分解
[ E r 0 0 0 ] = [ E r 1 0 0 0 ] ∗ [ E r 2 0 0 0 ] \begin{bmatrix} E_r &0\\0&0 \end{bmatrix}=\begin{bmatrix} E_{r1} &0\\0 &0 \end{bmatrix}*\begin{bmatrix} E_{r2} &0\\0&0 \end{bmatrix} [Er000]=[Er1000][Er2000]
4.满秩分解, A = U ∗ V , U , V 为 行 列 满 秩 阵 A=U*V,U,V为行列满秩阵 A=UV,U,V
[ E r 0 0 0 ] = [ E r 0 ] ∗ [ E r 0 ] \begin{bmatrix} E_r &0\\0&0 \end{bmatrix}=\begin{bmatrix} E_r \\0 \end{bmatrix}*\begin{bmatrix} E_r &0 \end{bmatrix} [Er000]=[Er0][Er0]

相似关系

一般相似

A = Q − 1 B Q , A=Q^{-1}BQ, A=Q1BQ

Jordan相似

1.对角幂零分解, A = B + C , B C = C B A=B+C,BC=CB A=B+C,BC=CB
A = Q J Q − 1 , J i = B i + C i , B i 对 角 , C i 幂 零 A=QJQ^{-1},J_i=B_i+C_i,B_i对角,C_i幂零 A=QJQ1,Ji=Bi+Ci,BiCi

2.Jordan分解, Q − 1 A Q = J Q^{-1}AQ=J Q1AQ=J

3.Voss分解, A = B C A=BC A=BC
任 一 复 方 阵 可 以 分 解 为 两 对 称 阵 之 积 , 且 一 个 可 逆 任一复方阵可以分解为两对称阵之积,且一个可逆 任 一 可 逆 阵 可 分 解 为 正 定 正 交 之 积 且 唯 一 任一可逆阵可分解为正定正交之积且唯一
LEMMA: K = K T = K − 1 , K 为 置 换 阵 ( 对 称 正 交 ) K=K^T=K^{-1},K为置换阵(对称正交) K=KT=K1,K
A = Q J Q − 1 , B = Q ∗ J K ∗ Q T , C = Q − T K Q − 1 A=QJQ^{-1},B=Q*JK*Q^T,C=Q^{-T}KQ^{-1} A=QJQ1,B=QJKQT,C=QTKQ1

合同关系

A = Q T B Q , A=Q^{T}BQ, A=QTBQ
1.Cholesky, A = L ∗ L T A=L*L^T A=LLT,对称正定矩阵A
2.平方分解 . A = B 2 .A=B^2 .A=B2,对称正定矩阵A
3.可逆幂等分解, A = B C , A 为 方 阵 , B 对 称 A=BC,A为方阵,B对称 A=BCA,B
A = P Λ Q ⇒ B = P ∗ Q , C = Q − 1 ∗ Λ ∗ Q A=P\Lambda Q\Rightarrow B=P*Q,C=Q^{-1}*\Lambda*Q A=PΛQB=PQ,C=Q1ΛQ

Other分解

1.Trace迹分解
A = B + C , t r ( C ) = 0 A=B+C,tr(C)=0 A=B+C,tr(C)=0
2.SVD谱分解
A = S V D , V 为 奇 异 值 矩 阵 , S , D 正 交 矩 阵 A=SVD,V为奇异值矩阵,S,D正交矩阵 A=SVD,VS,D

3.LU分解
A = L U , L , U 为 三 角 矩 阵 , G a u s s 消 元 法 得 到 A=LU,L,U为三角矩阵,Gauss消元法得到 A=LU,L,UGauss

5.QR分解
A = Q R , Q 正 交 , R 上 三 角 A=QR,Q正交,R上三角 A=QRQR

6.对称反对称分解, A = ( A + A T ) / 2 + ( A − A T ) / 2 A=(A+A^T)/2+(A-A^T)/2 A=A+AT/2+AAT/2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值