yolov5 loss部分

loss

loss部分的代码虽然很少,但是它的难度很大,要结合yolov5的损失函数一起去查看,这样会更加容易理解。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
	Loss functions
	
"""

import torch
import torch.nn as nn

from utils.metrics import bbox_iou
from utils.torch_utils import de_parallel


def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
    # return positive, negative label smoothing BCE targets
    """
    	普通的BCE损失非常依赖样本标记的正确率,如果某个样本标记错误,比如把正样本标记成负样本,那么会带来很大的误差。
    	而smoothBCE可以有效的减少由于样本标记错误带来的误差。如果看过SVM算法的话,感觉有点类似于硬间隔和软间隔
    	# 可以看这篇博客讲解label_smooth https://blog.csdn.net/racesu/article/details/107214035?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-107214035-blog-123999241.pc_relevant_default&spm=1001.2101.3001.4242.1&utm_relevant_index=2
    """
    return 1.0 - 0.5 * eps, 0.5 * eps


class BCEBlurWithLogitsLoss(nn.Module):
    # BCEwithLogitLoss() with reduced missing label effects.
    def __init__(self, alpha=0.05):
        super().__init__()
        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
        self.alpha = alpha

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        pred = torch.sigmoid(pred)  # prob from logits
        dx = pred - true  # reduce only missing label effects
        # dx = (pred - true).abs()  # reduce missing label and false label effects
        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
        loss *= alpha_factor
        return loss.mean()


class FocalLoss(nn.Module):
    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    # FocalLoss 可以先看这篇博客把focalloss理解了,再来看以下的代码 https://blog.csdn.net/qq_42363032/article/details/121573416
    """
    	在focalloss里面,我们关注两个参数,alpha和gamma 一个用来控制正负样本的权重,一个用来控制易难样本的权重
    
    """
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        # sigmoid+BCELOSS
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        """
        	当使用的参数为 mean(在pytorch1.7.1中elementwise_mean已经弃用)会对N个样本的loss进行平均之后返回
        	当使用的参数为 sum会对N个样本的loss求和
        	表示直接返回n分样本的loss
        """ 
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        # 只要把公式理解了,这里就是对公式进行代码的编写
        pred_prob = torch.sigmoid(pred)  # prob from logits
        # 对pt进行代码编写  true是真实的便签,别被其他语言 搞混了
        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = (1.0 - p_t) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class QFocalLoss(nn.Module):
    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
    # QFocalLoss我没有看过,可以看完论文之后再来看这里的代码
    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
        super().__init__()
        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
        self.gamma = gamma
        self.alpha = alpha
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply FL to each element

    def forward(self, pred, true):
        loss = self.loss_fcn(pred, true)

        pred_prob = torch.sigmoid(pred)  # prob from logits
        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
        loss *= alpha_factor * modulating_factor

        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss


class ComputeLoss:
    sort_obj_iou = False

    # Compute losses
    def __init__(self, model, autobalance=False):
        device = next(model.parameters()).device  # get model device
        h = model.hyp  # hyperparameters

        # Define criteria
        # 如果正负样本不均衡,我们可以给正负样本不同的权重,pos_weight代表的是正样本的权重
        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))

        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
        # 这里使用的就是label_smooth损失,比起BCE的效果要好
        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets

        # Focal loss
        # 获取fl_gamma参数,如果大于0的时候采用focalloss,否则使用BCE
        g = h['fl_gamma']  # focal loss gamma
      
        if g > 0:
            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)

        m = de_parallel(model).model[-1]  # Detect() module
        # 
        self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
        self.ssi = list(m.stride).index(16) if autobalance else 0  # stride 16 index
        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
        self.na = m.na  # number of anchors
        self.nc = m.nc  # number of classes
        self.nl = m.nl  # number of layers  检测头的个数,默认是三个检测头
        self.anchors = m.anchors
        self.device = device

    def __call__(self, p, targets):  # predictions, targets
        lcls = torch.zeros(1, device=self.device)  # class loss
        lbox = torch.zeros(1, device=self.device)  # box loss
        lobj = torch.zeros(1, device=self.device)  # object loss
        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets

        # Losses
        for i, pi in enumerate(p):  # layer index, layer predictions
            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
            tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device)  # target obj

            n = b.shape[0]  # number of targets
            if n:
                # pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1)  # faster, requires torch 1.8.0
                pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1)  # target-subset of predictions

                # Regression
                # 有目标的情况,我们对obj计算误差
                # bx = (2*σ(offsetX)−0.5)+gridX
                # by = (2*σ(offsetY)−0.5)+gridY

                pxy = pxy.sigmoid() * 2 - 0.5
                # 计算bw和bh 由于这是  pwh = (pwh.sigmoid() * 2) ** 2  的值域范围在-4~4之间
                pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
                pbox = torch.cat((pxy, pwh), 1)  # predicted box
                iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze()  # iou(prediction, target)
                lbox += (1.0 - iou).mean()  # iou loss

                # Objectness
                # iou不更新梯度,它只是我们选择的一个标准
                iou = iou.detach().clamp(0).type(tobj.dtype)
                if self.sort_obj_iou:
                    j = iou.argsort()
                    b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
                if self.gr < 1:
                    iou = (1.0 - self.gr) + self.gr * iou
                tobj[b, a, gj, gi] = iou  # iou ratio

                # Classification
                if self.nc > 1:  # cls loss (only if multiple classes)
                    t = torch.full_like(pcls, self.cn, device=self.device)  # targets
                    t[range(n), tcls[i]] = self.cp
                    lcls += self.BCEcls(pcls, t)  # BCE

                # Append targets to text file
                # with open('targets.txt', 'a') as file:
                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]

            obji = self.BCEobj(pi[..., 4], tobj)
            lobj += obji * self.balance[i]  # obj loss
            if self.autobalance:
                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()

        if self.autobalance:
            self.balance = [x / self.balance[self.ssi] for x in self.balance]

        # 根据超参数对各个loss进行平衡
        lbox *= self.hyp['box']
        lobj *= self.hyp['obj']
        lcls *= self.hyp['cls']
        bs = tobj.shape[0]  # batch size
        # loss的参数不需要梯度传播,网络只是通过loss的值来进行更新参数
        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()

    def build_targets(self, p, targets):
        """
            
            return
            tcls, 预测的cls
            tbox, 预测的box
            indices,
            anch, 预测框
        """

        # nt: [image_index,class ,x, y, w, h]
        na, nt = self.na, targets.shape[0]  # number of anchors, targets
        tcls, tbox, indices, anch = [], [], [], []
        gain = torch.ones(7, device=self.device)  # normalized to gridspace gain
        # ai 维度 = [na, nt] 并且是从0->na  即 ai[0,:]全为零 ai[1,:]全为一,相当于给ai一个anchor索引,
        # x.repeat(a,b) 先把列乘以b倍,再把行乘以a倍 
        ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
        # targets = [na, nt, 7]
        # x.repeat(a,b,c) 同列先把第三维度乘以c倍,再把第二维度乘以b倍,再把第一位都乘以a倍
        # ai[..., None] 相当于给增加最后一维 ai [na, nt]->[na, ne, 1] 之后再使用cat拼接,dim=2
        """
        	targets.repeat(na, 1, 1) targets[22,6],因为他是从后往前执行的,如果维度不够会自动扩充维度。[na,1,1(2)]先把6这个维度进行乘以1(2)倍,因为维度足够,再把第一次结果的值因为维度没有变化还是[22,6]([22,12])乘以1倍,最后因为维度不够,需要扩充维度再乘以na倍,所以经过处理过后 
        	targets.repeat(na, 1, 1)-> [na,nt,6]   
        	ai[..., None])->[na,nt,1]
        	torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)->[na, nt,7]
        """
        targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2)  # append anchor indices

        g = 0.5  # bias
        # 这个偏移是为了预测误差时候用的,因为在yolov5当中,不单单是一个网格来预测,而是在他的上下左右一起来预测
        off = torch.tensor(
            [
                [0, 0],
                [1, 0],
                [0, 1],
                [-1, 0],
                [0, -1],  # j,k,l,m
                # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
            ],
            device=self.device).float() * g  # offsets

        for i in range(self.nl):
            # 别搞混, Detect层有三个检测头,每个检测头有三个候选框
            # 当前feature map 所对应的anchors 每个anchors[w,h]
            # yoloV5 为3个anchors 即 anchors = [3,2]
            anchors = self.anchors[i]
            # 现在gain [1,1,w,h,w,h,1]
            # p代表当前特征层的shape,默认是80*80, 40*40, 20*20
            gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain

            # Match targets to anchors
            # 将targets给缩放一下,之前是归一化的结果,现在直接相乘,便得到了在改网格下的结果 注意,这里使用了python的广播机制
            t = targets * gain  # shape(3,n,7)
            if nt:
                # Matches
                # anchors[:,None] = [3,1,2] 把正样本与宽高做比较(w/w, h/h)
                r = t[..., 4:6] / anchors[:, None]  # wh ratio

                # .max(2) 返回两个值,一个是value 一个是index
                # 筛选掉一些不满足的预测框
                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
                t = t[j]  # 过滤掉比预设小的样本

                # Offsets
                gxy = t[:, 2:4]  # target中心点的相对于左上角的坐标
                gxi = gain[[2, 3]] - gxy  # target中心点相对于右下角的坐标

                # 判断是否把 左,上格子 也当作该目标进行训练
                j, k = ((gxy % 1 < g) & (gxy > 1)).T
                # 判断是否把 右,下格子 也当作该目标进行训练
                l, m = ((gxi % 1 < g) & (gxi > 1)).T
                # (torch.ones_like(j)中心网格的格子,永远为正,j,k,l,m 分别代表左上右下的格子
                j = torch.stack((torch.ones_like(j), j, k, l, m))
                # repeat函数 第一个参数是重复的次数, 第二个是列重复的倍数,第三个是行重复的倍数
                # 现在就是将t给重复五遍,分别得到中心,左,上,右,下
                t = t.repeat((5, 1, 1))[j]
                # offsets代表中心,左上右下的偏移量
                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
            else:
                t = targets[0]
                offsets = 0

            # Define
            # a表示了是属于哪一个预测框
            bc, gxy, gwh, a = t.chunk(4, 1)  # (image, class), grid xy, grid wh, anchors
            a, (b, c) = a.long().view(-1), bc.long().T  # anchors, image, class
            gij = (gxy - offsets).long()
            gi, gj = gij.T  # grid indices

            # Append
            # gj.clamp_(min,max) 把gj压缩到min和max这个区间范围之内
            # b: img_index   a: anchors gj和gi表示相对于左上角的h,w
            indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
            anch.append(anchors[a])  # anchors
            tcls.append(c)  # class

        return tcls, tbox, indices, anch

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值