Python与量化投资 第 六 章

Python与量化投资

从基础到实战

在这里插入图片描述

第六章 常见的量化策略及其实现

在前面章节基础上,本章将展示什么是量化投资,以及如何利用优矿量化平台编写各种策略。
本博客只介绍基本的理论,不进行深入研究,优矿平台可以免费使用,但是运行条件受限。可以研究其他的量化平台,不过想要条件好,就得会员。

6.1 量化投资概述

  • 量化投资简介
    量化投资是借助量化金融分析方法进行资产管理的一种投资方法,而量化金融分析方法是一种结合了金融数据、个人经验、数学模型及计算机技术的复杂金融及分析方法。
    金融数据:行情数据、高频数据、因子数据、新闻数据等
    个人经验:基金经理的个人投资经验
    数学模型:统计分析、机器学习、深度学习
    计算机技术:简单计算、并行计算

  • 量化投资策略的类型

常见的资产类别:
股票策略
基金策略:指数、分级、股票型、债券型、货币型、衍生证券型基金
期货策略:股指、商品期货
期权策略:指数和个股期权
债券策略:国家、政府、上市公司、未上市公司、其他资产债券、组合债券
海外资产策略:直接投资海外市场证券、通过国内跟踪海外市场的基金来进行间接投资

  • 量化研究的流程
    在这里插入图片描述

获取数据:公司财务数据、新闻数据、关联数据、基金行情数据、高频数据

数据分析挖掘:传统分析方法、新兴大数据、机器学习、数据挖掘方法

构建信号:在构建信号前进行数据处理、标准化、去极值、中性化;基础信号的研究、分组回测、ic、ir、衰减、行业分布;将基础信号合成复杂信号。

构建策略:策略模板

回测: 完美符合历史的真实行情、股票分红送转、除权除息处理、股票涨跌停处理等

策略分析: 策略归因、风险归因、订单分析、成交分析、多策略分析

模拟交易: 接入实时行情、实时获取成交回报、篮子交易、算法交易

实盘交易: 接入真实券商账户 、 极速行情、实时下单、实时获取订单回报

历史一直在变,唯一不变的是历史一直在发展。
在量化投资领域,数据是最大的核心,甚至是唯一的核心。

6.2 行业轮动理论及其投资策略

  • 行业轮动理论简介
  • 行业轮动的原因
  • 行业轮动投资策略

6.3 市场中性Alpha 策略

  • 市场中性Alpha 策略介绍
  • 市场中性Alpha 策略的思想和方法
  • 实例展示

6.4 大师策略

  • 麦克· 欧希金斯绩优成分股投资法
  • 杰拉尔丁·维斯蓝筹股投资法

6.5 CTA 策略

  • 趋势跟随策略
  • 均值回复策略
  • CTA 策略表现分析

6.6 Smart Beta

  • 基于权重优化的Smart Beta
  • 基于风险因子的Smart Bata

6.7 技术指标类策略

  • AROON 指标
  • BOLL 指标
  • CCI 指标
  • CMO 指标
  • Chaikin Oscillator 指标
  • DMI 指标
  • 优矿平台因子汇总

6.8 资产配置

  • 有效边界
  • Black-Litterman 模型
  • 风险评价模型

6.9 时间序列分析

  • 与时间序列分析相关的基础知识
  • 自回归(AR)模型
  • 滑动平均(MR)模型
  • 自回归滑动平均(ARMA)模型
  • 自回归差分滑动平均(ARIMA)模型

6.10 组合优化器的使用

  • 优化器的概念
  • 优化器的API接口
  • 优化器实例

6.11 期权策略:Greeks 和隐含波动微笑计算

  • 数据准备
  • Greeks 和隐含波动率计算
  • 隐含波动率微笑

第七章 量化投资十问十答

量化投资涉及很多方面,有各种场景下的应用,定义也比较困难,我们姑且将其定义为借助于数学知识、统计学知识开发出策略模型,根据策略模型给出的信号严格执行信号的投资过程。其本质是从数据的角度提炼出市场不够有效的成分,用模型加以概括。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值