Python与量化投资
从基础到实战
第六章 常见的量化策略及其实现
在前面章节基础上,本章将展示什么是量化投资,以及如何利用优矿量化平台编写各种策略。
本博客只介绍基本的理论,不进行深入研究,优矿平台可以免费使用,但是运行条件受限。可以研究其他的量化平台,不过想要条件好,就得会员。
6.1 量化投资概述
-
量化投资简介
量化投资是借助量化金融分析方法进行资产管理的一种投资方法,而量化金融分析方法是一种结合了金融数据、个人经验、数学模型及计算机技术的复杂金融及分析方法。
金融数据:行情数据、高频数据、因子数据、新闻数据等
个人经验:基金经理的个人投资经验
数学模型:统计分析、机器学习、深度学习
计算机技术:简单计算、并行计算 -
量化投资策略的类型
常见的资产类别:
股票策略
基金策略:指数、分级、股票型、债券型、货币型、衍生证券型基金
期货策略:股指、商品期货
期权策略:指数和个股期权
债券策略:国家、政府、上市公司、未上市公司、其他资产债券、组合债券
海外资产策略:直接投资海外市场证券、通过国内跟踪海外市场的基金来进行间接投资
- 量化研究的流程
获取数据:公司财务数据、新闻数据、关联数据、基金行情数据、高频数据
数据分析挖掘:传统分析方法、新兴大数据、机器学习、数据挖掘方法
构建信号:在构建信号前进行数据处理、标准化、去极值、中性化;基础信号的研究、分组回测、ic、ir、衰减、行业分布;将基础信号合成复杂信号。
构建策略:策略模板
回测: 完美符合历史的真实行情、股票分红送转、除权除息处理、股票涨跌停处理等
策略分析: 策略归因、风险归因、订单分析、成交分析、多策略分析
模拟交易: 接入实时行情、实时获取成交回报、篮子交易、算法交易
实盘交易: 接入真实券商账户 、 极速行情、实时下单、实时获取订单回报
历史一直在变,唯一不变的是历史一直在发展。
在量化投资领域,数据是最大的核心,甚至是唯一的核心。
6.2 行业轮动理论及其投资策略
- 行业轮动理论简介
- 行业轮动的原因
- 行业轮动投资策略
6.3 市场中性Alpha 策略
- 市场中性Alpha 策略介绍
- 市场中性Alpha 策略的思想和方法
- 实例展示
6.4 大师策略
- 麦克· 欧希金斯绩优成分股投资法
- 杰拉尔丁·维斯蓝筹股投资法
6.5 CTA 策略
- 趋势跟随策略
- 均值回复策略
- CTA 策略表现分析
6.6 Smart Beta
- 基于权重优化的Smart Beta
- 基于风险因子的Smart Bata
6.7 技术指标类策略
- AROON 指标
- BOLL 指标
- CCI 指标
- CMO 指标
- Chaikin Oscillator 指标
- DMI 指标
- 优矿平台因子汇总
6.8 资产配置
- 有效边界
- Black-Litterman 模型
- 风险评价模型
6.9 时间序列分析
- 与时间序列分析相关的基础知识
- 自回归(AR)模型
- 滑动平均(MR)模型
- 自回归滑动平均(ARMA)模型
- 自回归差分滑动平均(ARIMA)模型
6.10 组合优化器的使用
- 优化器的概念
- 优化器的API接口
- 优化器实例
6.11 期权策略:Greeks 和隐含波动微笑计算
- 数据准备
- Greeks 和隐含波动率计算
- 隐含波动率微笑
第七章 量化投资十问十答
量化投资涉及很多方面,有各种场景下的应用,定义也比较困难,我们姑且将其定义为借助于数学知识、统计学知识开发出策略模型,根据策略模型给出的信号严格执行信号的投资过程。其本质是从数据的角度提炼出市场不够有效的成分,用模型加以概括。