剑指 Offer 14- I. 剪绳子

1. 题目

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]k[1]…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示:
2 <= n <= 58

2. 思路

我也有点懵圈了,
动态规划,贪心,数学理论,都行

最终用了数学理论,尽可能多出现3,乘积会更大,这里只是数学理论上证明一下,不需要写在算法中

3. 程序

class Solution {
    public int cuttingRope(int n) {

        if(n < 4) return n-1;
        int max = 1;
        while(n > 4) {
            n = n-3;
            max = max *3 ;
        }
        return  max * n ;
    }
}

4. 总结

  • 动态规划、贪心,数学都可以完成,但是动态规划和贪心最容易想起来,代码量也比较大
  • 多思考,多写代码
  • 加油,挺住
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值