描述
定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1))。
算法
设原栈为normal
新建一个相同大小的栈为minval,
每次normal.push(value)时(设push值为value)判断normal.top()与value之间大小关系,若小于value,则执行minval.push(normal.top())
每次pop对两个栈都执行
空间复杂度:O(n)
时间复杂度:O(1)
class Solution {
public:
stack<int> normal, minval;
void push(int value) {
if(normal.empty() || value < normal.top())
{
normal.push(value);
minval.push(value);
}
else
{
minval.push(normal.top());
normal.push(value);
}
}
void pop() {
if(normal.empty())
{
return;
}
else
{
normal.pop();
minval.pop();
}
}
int top() {
if(normal.empty())
{
return -1;
}
return normal.top();
}
int min() {
if(normal.empty())
{
return -1;
}
return minval.top();
}
};