kaggle 泰坦尼克号2 得分0.7799

本文介绍了如何在Titanic数据集中处理缺失值,包括填充Fare和Embarked列,以及使用随机森林回归预测年龄。随后提取了特征如Title、FamilySize等,并将数据集划分为训练集和测试集,最后用随机森林分类器进行模型训练并生成预测结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流程

  1. 导入所要使用的包
  2. 引入kaggle的数据集csv文件
  3. 查看数据集有无空值
  4. 填充这些空值
  5. 提取特征
  6. 分离训练集和测试集
  7. 调用模型

导入需要的包

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')

引入kaggle的数据集csv文件

train=pd.read_csv('train.csv')
test=pd.read_csv('test.csv')
datas = pd.concat([train, test], ignore_index = True)

查看数据集有无空值

datas.info()

在这里插入图片描述
看到了有空值的属性列,Age,Fare,Cabin,Embarked
下面的操作就是给这些空值填充。

填充这些空值

首先填充少的Fare票价少了一行,先看一看这一行的信息

datas[datas['Fare'].isnull()]

在这里插入图片描述
已知信息,pclass等级是三类,说明比较贫穷
直接填一个较低的数字就行了
票价就给个差不多7.8好了,就一个数据缺失影响不大

datas['Fare']=datas['Fare'].fillna(7.8)

Embarked少了两行,先看一下这两行的信息

datas[datas['Embarked'].isnull()]

在这里插入图片描述
首先二人是女性,根据他们的女士优先的原则,存活概率比较高,pclass也是一级的,所以根据分配给他们三个港口存活率最高的C港口

datas['Embarked'] = datas['Embarked'].fillna('C')

还有Cabin船仓,缺失的很多,干脆把缺失的也归为一类,直接填充为U,然后每个取首字母,得到以字母为编号的船舱信息
空白填充为U

datas['Cabin']=datas['Cabin']
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值