import cv2 import numpy as np import matplotlib.pyplot as plt import cv2 as cv import math def calc_gray_hist(image): rows,cols=image.shape gray_hist=np.zeros([256],dtype=np.uint64) for i in range(rows): for j in range(cols): gray_hist[image[i,j]]+=1 return gray_hist def otsu_thresh(image): rows,cols=image.shape #计算灰度直方图 gray_hist=calc_gray_hist(image) #直方图归一化处理 norm_hist=gray_hist/(rows*cols) #计算累计距,一阶累积矩 zero_cumu_moment=np.zeros([256],dtype=np.float64) one_cumu_moment = np.zeros([256], dtype=np.float64) variance_G= np.zeros([256], dtype=np.float64) for i in range(256): if i==0: zero_cumu_moment[i]=norm_hist[i] one_cumu_moment[i]=0 variance_G[i] = 0 else: zero_cumu_moment[i]=zero_cumu_moment[i-1]+norm_hist[i] one_cumu_moment[i]=one_c
使用otsu方法的最优阈值处理
于 2022-06-22 10:58:41 首次发布