使用otsu方法的最优阈值处理

该博客介绍了如何使用Otsu算法计算图像的最佳阈值,实现自动二值化。代码示例中展示了从读取灰度图像到计算灰度直方图,再到应用Otsu算法求得阈值并进行图像分割的过程。最后,博客展示了可分离性测量度和处理后的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import cv2
import numpy as np
import matplotlib.pyplot as plt
import cv2 as cv
import math

def calc_gray_hist(image):
    rows,cols=image.shape
    gray_hist=np.zeros([256],dtype=np.uint64)
    for i in range(rows):
        for j in range(cols):
            gray_hist[image[i,j]]+=1
    return gray_hist


def otsu_thresh(image):
    rows,cols=image.shape
    #计算灰度直方图
    gray_hist=calc_gray_hist(image)
    #直方图归一化处理
    norm_hist=gray_hist/(rows*cols)
    #计算累计距,一阶累积矩
    zero_cumu_moment=np.zeros([256],dtype=np.float64)
    one_cumu_moment = np.zeros([256], dtype=np.float64)
    variance_G= np.zeros([256], dtype=np.float64)
    for i in range(256):
        if i==0:
            zero_cumu_moment[i]=norm_hist[i]
            one_cumu_moment[i]=0
            variance_G[i] = 0
        else:
            zero_cumu_moment[i]=zero_cumu_moment[i-1]+norm_hist[i]
            one_cumu_moment[i]=one_c
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值