图像处理之阈值分割[全局阈值、Otsu阈值和迭代式阈值分割]

本文详细介绍了图像处理中的阈值分割技术,包括全局阈值分割、Otsu阈值分割和迭代式阈值分割。通过MATLAB代码展示了这三种方法的实现过程,适用于目标与背景灰度级差异明显的图像分割。全局阈值法基于图像的灰度直方图选取阈值;Otsu算法利用最大类间方差寻找最优阈值;迭代式阈值分割则通过迭代方法自适应地确定最佳分割阈值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、阈值分割基本定义

阈值分割技术是最经典和流行的图像分割方法之一,也是最简单的一种图像分割方法。此技术关键在于寻找适当的灰度阈值,通常是根据图像的灰度直方图来选取。它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。它不仅可以极大的压缩数据量,而且也大大简化了图像信息的分析和处理步骤。阈值分割技术特别适用于目标和背景处于不同灰度级范围的图像。该方法的最大特点是计算简单,在重视运算效率的应用场合中得到了广泛的应用。

二、全局阈值分割

1、基本原理

可以通过全局的信息,例如整个图像的灰度直方图。如果在整个图像中只使用一个阈值,则这种方法叫做全局阈值法,整个图像分成两个区域,即目标对象( 黑色)和背景对象(白色)。全局阈值将整个图像的灰度阈值设置为常数。

对于物体和背景对比较明显的图像,其灰度直方图为双峰形状,可以选择两峰之间的波谷对应的像素值作为全局阙值,将图像分割为目标对象和背景。其公式如下:

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值