pdf文件两栏内容提取信息思路

需求说明:
需要从一类pdf中提取必要信息,此处是电子元器件的应用领域信息。
编程语言:python

步骤一:下载pdf

  • 使用爬虫库requests库下载,不赘述

步骤二:pdf转换成文本

  • 文本要求 方便提取和解析
    • 方案一 使用plumber库 直接转化成 txt格式,虽然能够有效的进行数据转换;虽然能够有效转换,但是 对于 pdf两栏的数据,会变成同一行,造成解析混乱; 放弃使用使用此方案;

      • 如图
        在这里插入图片描述
        在这里插入图片描述
    • 方案二 先使用 fitz 库将 pdf转换成html,再使用bs4 或xpath转换成txt 文本;这样就可以将原来pdf 的文本按顺序保存下来。

      • 如图在这里插入图片描述
    • 方案三 将pdf 转化成图片,切割分栏,使用OCR工具识别;OCR工具识别的出来的问题,一定的不准确性,放弃此方案。除非是遇到了pdf是纯图片的,才会使用这种方式。

步骤三 提取文本信息

  • 观察文本特点,使用正则进行提取
    • 如图 在这里插入图片描述
    • 提取出来的文本
      • 如图 在这里插入图片描述
    • 使用正则匹配 从 Applications 到 Description 之间的内容就可以了
    • 注意
      • pdf 并不是如我们期待的 这么规整;可能有多个版本。例如 没有 Applications 内容,没有 Description 字符串 , Applications 少了一个s或全部大写等多种情况。提取出来的内容,还是掺杂许多你不想要的内容,需要进一步清洗;此时就要考虑多种情况写正则表达式,这是提取文本信息最繁琐的耗时的地方。
      • 建议提取方案是 先找到结尾 如 Applications 和 Description 处,穷尽开头和结尾的情况,先提取出来一部分内容,再从提取的内容中作筛选。
<think>好的,我现在需要帮助用户了解如何使用大模型来解析PDF文件。根据用户提供的引用资料,特别是引用[1]和[2],我需要整理相关信息,确保回答符合系统级指令,比如正确使用LaTeX格式、生成相关问题等。 首先,用户提到的引用[1]是关于使用无OCR大型多模态模型解析PDF的方法,提到了2img.ai这个工具。而引用[2]则介绍了gptpdf,基于视觉大语言模型(VLLM)将PDF转为Markdown。我需要整合这些信息,说明方法和工具。 接下来,我需要按照用户的指示,结构清晰地分步骤回答,可能包括方法概述、工具介绍、步骤说明等。同时,要注意行内数学表达式用$...$,独立公式用$$...$$,但当前问题可能不涉及数学公式,这点需要注意。不过,用户的问题主要涉及技术方法,可能不需要数学表达式,但需要确保LaTeX正确,如果有的话。 然后,生成相关问题部分,需要围绕大模型解析PDF的方法和工具,提出相关的问题,比如优缺点、比较、应用场景等。要确保问题自然且相关。 另外,用户提到的引用资料需要正确标注在回答中,比如在提到无OCR方法时添加[^1],提到gptpdf时添加[^2]。 现在需要检查是否有遗漏的信息,确保回答覆盖用户的问题,即方法和工具,同时引用提供的资料。此外,要使用中文,保持结构清晰,分点说明。 可能的结构如下: 1. 方法概述:介绍无OCR多模态模型和视觉大语言模型的方法。 2. 工具介绍:分别介绍2img.ai和gptpdf的特点和使用步骤。 3. 其他工具补充:可能提到PyMuPDF或OCR-based工具作为对比。 4. 注意事项:如模型选择、格式转换等。 5. 相关问题:生成三个相关问题。 需要确保每个引用出现在正确的位置,例如在无OCR部分引用[^1],在gptpdf部分引用。 现在需要组织语言,确保自然流畅,符合用户要求的回答结构。同时,检查是否有任何LaTeX需要处理,目前看起来可能不需要,但保持警惕,如果有变量或公式出现的话。 最后,生成的相关问题需要与主题紧密相关,帮助用户深入理解,比如优缺点、工具比较、应用场景等。</think>### 使用大模型解析PDF的方法和工具 #### 1. **核心方法概述** - **无OCR多模态模型解析** 通过大型多模态模型(如视觉-语言联合模型)直接理解PDF的视觉布局和文本内容,无需依赖OCR技术。这种方法能够处理扫描版、复杂排版的文档,并通过模型端到端生成结构化文本。 例如,模型可将PDF中的表格、公式(如$E=mc^2$)和图文混排内容准确转换为Markdown或HTML格式。 - **视觉大语言模型(VLLM)驱动** 结合视觉特征提取和自然语言处理能力,VLLM可解析PDF中的语义逻辑,例如识别章节标题(如`## 实验结果`)、代码块或数学公式(如$\int_a^b f(x)dx$)。 #### 2. **典型工具与使用步骤** - **工具1:2img.ai(无OCR方法)** - **特点**:支持高精度解析扫描版PDF,适用于学术论文、技术手册等复杂文档。 - **步骤**: 1. 上传PDF文件至平台; 2. 选择输出格式(如Markdown、LaTeX); 3. 模型自动分析并生成结构化文本,用户可在线编辑或下载。 - **工具2:gptpdf(基于VLLM)** - **特点**:开源项目,依赖视觉大模型处理多排版、手写注释等场景。 - **步骤**: ```bash # 安装工具 pip install gptpdf # 运行解析命令 gptpdf-cli --input doc.pdf --output doc.md ``` 输出结果保留原始文档的层级结构,适合技术文档转换。 - **其他工具补充** - **PyMuPDF + 大模型API**:提取PDF文本后,调用GPT-4等模型进行语义增强(如总结表格内容); - **OCR-based工具(如Adobe Acrobat)**:传统OCR结合大模型后处理,适合纯扫描件解析。 #### 3. **关键注意事项** - **模型选择**:复杂公式解析需选择数学感知能力强的模型(如LLaMA-3); - **格式兼容性**:输出时需检查Markdown/LaTeX的数学公式渲染(如`$$ \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} $$`); - **隐私保护**:敏感文档建议使用本地部署的模型(如私有化部署的gptpdf)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值