性能度量 - 对学习器泛化能力的评估

导语: 如何计算“测试误差”? 需要利用性能度量,例如:均方差,错误率等,即“测试误差”的一个评价标准。有了评估方法和性能度量,就可以计算出学习器的“测试误差”,但由于“测试误差”受到很多因素的影响,例如:算法随机性或测试集本身的选择。

预备知识: 何为泛化能力? 是指在利用训练集建立一个模型完成后, 该模型对于新的数据集 (或测试集)的一个适应能力, 有的模型在训练集中拟合的非常漂亮, 但是对于一个新的数据, 并不能很好的预测, 说明这样的模型泛化能力很差, 一般是过拟合的情况

性能度量(performance measure)是衡量模型泛化能力的评价标准,在对比不同模型的能力时,使用不同的性能度量往往会导致不同的评判结果。

1. 最常见的性能度量 - 错误率与精度

  1. 在回归任务中,即预测连续值的问题,最常用的性能度量是“均方误差”(mean squared error),很多的经典算法都是采用了MSE作为评价函数。

1.png

  1. 在分类任务中,即预测离散值的问题,最常用的是错误率和精度,错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例,易知:错误率+精度=1。

2.png

3.png

2. 查准率/查全率/F1

错误率和精度虽然常用,但不能满足所有的需求,例如:在推荐系统中,只关心推送给用户的内容用户是否感兴趣(即查准率),或者说所有用户感兴趣的内容推送出来了多少(即查全率)。因此,使用查准/查全率更适合描述这类问题。对于二分类问题,分类结果混淆矩阵与查准/查全率定义如下:

4.png

初次接触时,FN与FP很难正确的理解,按照惯性思维容易把FN理解成:False->Negtive,即将错的预测为错的,这样FN和TN就反了,后来找到一张图,描述得很详细,为方便理解,把这张图也贴在了下边:

5.png

正如天下没有免费的午餐(NFL),查准率和查全率是一对矛盾的度量。例如想让推送的内容尽可能用户全都感兴趣,那只能推送把握高的内容,这样就漏掉了一些用户感兴趣的内容,查全率就低了;如果想让用户感兴趣的内容都被推送,那只有将所有内容都推送上,宁可错杀一千,不可放过一个,这样查准率就很低了。

“P-R曲线”正是描述查准/查全率变化的曲线,P-R曲线定义如下:根据学习器的预测结果(一般为一个实值或概率)对测试样本进行排序,将最可能是“正例”的样本排在前面,最不可能是“正例”的排在后面,按此顺序逐个把样本作为“正例”进行预测,每次计算出当前的P值和R值,如下图所示:

6.png

P-R曲线如何评估呢?若一个学习器A的P-R曲线被另一个学习器B的P-R曲线完全包住,则称:B的性能优于A。若A和B的曲线发生了交叉,则谁的曲线下的面积大,谁的性能更优。但一般来说,曲线下的面积是很难进行估算的,所以衍生出了“平衡点”(Break-Event Point,简称BEP),即当P=R时的取值,平衡点的取值越高,性能更优。

P和R指标有时会出现矛盾的情况,这样就需要综合考虑他们,最常见的方法就是F-Measure,又称F-Score。F-Measure是P和R的加权调和平均,即:

7.png

8.png

特别地,当β=1时,也就是常见的F1度量,是P和R的调和平均,当F1较高时,模型的性能越好。

9.png

10.png

有时候会有多个二分类混淆矩阵,例如:多次训练或者在多个数据集上训练,那么估算全局性能的方法有两种,分为宏观和微观。简单理解,宏观就是先算出每个混淆矩阵的P值和R值,然后取得平均P值macro-P和平均R值macro-R,在算出Fβ或F1,而微观则是计算出混淆矩阵的平均TP、FP、TN、FN,接着进行计算P、R,进而求出Fβ或F1。

11.png

3. ROC与AUC

如上所述:学习器对测试样本的评估结果一般为一个实值或概率,设定一个阈值,大于阈值为正例,小于阈值为负例,因此这个实值的好坏直接决定了学习器的泛化性能,若将这些实值排序,则排序的好坏决定了学习器的性能高低。ROC曲线正是从这个角度出发来研究学习器的泛化性能,ROC曲线与P-R曲线十分类似,都是按照排序的顺序逐一按照正例预测,不同的是ROC曲线以“真正例率”(True Positive Rate,简称TPR)为横轴,纵轴为“假正例率”(False Positive Rate,简称FPR),ROC偏重研究基于测试样本评估值的排序好坏。

12.png

13.png

简单分析图像,可以得知:当FN=0时,TN也必须0,反之也成立,可以画一个队列,试着使用不同的截断点(即阈值)去分割队列,来分析曲线的形状,(0,0)表示将所有的样本预测为负例,(1,1)则表示将所有的样本预测为正例,(0,1)表示正例全部出现在负例之前的理想情况,(1,0)则表示负例全部出现在正例之前的最差情况。

现实中的任务通常都是有限个测试样本,因此只能绘制出近似ROC曲线。绘制方法:首先根据测试样本的评估值对测试样本排序,接着按照以下规则进行绘制。

14.png

同样地,进行模型的性能比较时,若一个学习器A的ROC曲线被另一个学习器B的ROC曲线完全包住,则称B的性能优于A。若A和B的曲线发生了交叉,则谁的曲线下的面积大,谁的性能更优。ROC曲线下的面积定义为AUC(Area Uder ROC Curve),不同于P-R的是,这里的AUC是可估算的,即AOC曲线下每一个小矩形的面积之和。易知:AUC越大,证明排序的质量越好,AUC为1时,证明所有正例排在了负例的前面,AUC为0时,所有的负例排在了正例的前面。

15.png

4. 代价敏感错误率与代价曲线

上面的方法中,将学习器的犯错同等对待,但在现实生活中,将正例预测成假例与将假例预测成正例的代价常常是不一样的,例如:将无疾病–>有疾病只是增多了检查,但有疾病–>无疾病却是增加了生命危险。以二分类为例,由此引入了“代价矩阵”(cost matrix)。

16.png

在非均等错误代价下,希望的是最小化“总体代价”,这样“代价敏感”的错误率(2.5.1节介绍)为:

17.png

同样对于ROC曲线,在非均等错误代价下,演变成了“代价曲线”,代价曲线横轴是取值在[0,1]之间的正例概率代价,式中p表示正例的概率,纵轴是取值为[0,1]的归一化代价。

18.png

19.png

代价曲线的绘制很简单:设ROC曲线上一点的坐标为(TPR,FPR) ,则可相应计算出FNR,然后在代价平面上绘制一条从(0,FPR) 到(1,FNR) 的线段,线段下的面积即表示了该条件下的期望总体代价;如此将ROC 曲线土的每个点转化为代价平面上的一条线段,然后取所有线段的下界,围成的面积即为在所有条件下学习器的期望总体代价,如图所示:

20.png

本文部分内容引用< 西 瓜 书 − 周 志 华 著 西瓜书_{-周志华著} 西>

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: k近邻分类的超参数包括k值的选择、距离度量方式的选择等。常用的调优方法有以下几种: 1. 网格搜索(Grid Search):对于每个超参数组合,通过交叉验证计算模型性能,最终选取最佳超参数组合。 2. 随机搜索(Random Search):随机选取超参数组合,并通过交叉验证计算模型性能,最终选取性能最好的超参数组合。 3. 贝叶斯优(Bayesian Optimization):基于贝叶斯定理,通过已知的超参数组合和性能信息,计算后验概率分布,进一步选择更优的超参数组合。 4. 遗传算法(Genetic Algorithm):通过模拟生物进过程,对超参数进行优。 以上方法都有各自的优缺点,需要根据具体情况选择。 ### 回答2: k近邻(k-nearest neighbors,简称KNN)是一种常用的分类算法,其基本思想是通过计算未知样本与已知样本之间的距离,找出与其最近的k个邻居,根据这些邻居的标签确定未知样本的类别。 在使用KNN分类时,超参数调优是非常重要的,它们可以影响模型的性能和效果。以下是一些常用的超参数和调优方法: 1. 选择合适的K值:K值是指在确定未知样本类别时所考虑的邻居数目。K值的选择可以通过交叉验证来确定,通过尝试不同的K值并评估模型的性能,选择使模型效果最好的K值。 2. 距离度量方式:KNN分类中常用的距离度量方式有欧几里得距离、曼哈顿距离等。在实践中,可以尝试不同的距离度量方式来比较模型的性能,并选择最佳的度量方式。 3. 特征归一:对于KNN算法来说,特征的尺度差异会对距离度量产生影响,因此需要对特征进行归一处理。常用的特征归一方法有Z-score归一和Min-Max归一等,在实验中可以分别应用这些方法,并比较它们对模型性能的影响。 4. 权重设置:在KNN中,可以为每个邻居样本设置权重,使与未知样本更近的邻居对分类结果产生更大的影响。通过调整不同的权重与距离的关系,可以控制邻居样本的影响程度,从而提升模型性能。 5. 分类决策规则:在确定未知样本类别时,可以使用多数投票法或加权投票法等。对于多数投票法来说,可以通过调整邻居样本的数量、类别平衡等来优模型性能。 在调优超参数时,需要充分理解KNN分类的原理,并结合实际问题和数据集特点来选择合适的超参数组合。通过比较不同参数组合下的模型性能,可以选择最优的超参数组合,从而提高KNN分类性能能力。 ### 回答3: k近邻分类是一种基于实例的学习算法,其关键在于选择适合的超参数k值。超参数调优是为了找到最佳的k值,以获得最佳的分类性能。 首先,超参数的选择可以采用网格搜索的方法。即通过遍历不同的k值,并在每个k值下进行交叉验证,选择具有最佳性能的k值。这可以通过调用scikit-learn中的GridSearchCV函数来实现。该函数可以自动遍历所指定的超参数范围,并选择最佳的k值。 其次,可以通过学习曲线来分析k值对分类性能的影响。学习曲线是以训练集大小为横坐标,模型性能指标(如准确率)为纵坐标,绘制的曲线。可以通过调用GridSearchCV函数中的cv_results_属性来得到所有k值下的性能指标,然后绘制学习曲线,观察k值对性能的影响。在选择k值时,应选择在学习曲线中性能最好的区域。 此外,可以采用交叉验证来进行超参数调优。交叉验证可以帮助我们评估具有不同k值的分类性能。通过调用scikit-learn中的cross_val_score函数,可以获得不同k值下的交叉验证准确率,然后选择具有最高准确率的k值。 最后,还可以使用特定问题领域的知识来指导超参数的选择。例如,对于某些问题,知道类别之间的距离或数据的特定属性可能会更有利于分类,因此也可以据此选择k值。 综上所述,在进行k近邻分类的超参数调优时,可以考虑网格搜索、学习曲线分析、交叉验证和领域知识等方法,以找到最佳的k值,从而获得最佳的分类性能

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小王同学2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值