梯度下降 (Gradient Descent)

1. 基本思想

梯度下降是一个用来求函数最小值的算法,将使用梯度下降算法来求出代价函数 J ( θ 0 , θ 1 ) J(\theta_{0}, \theta_{1}) J(θ0,θ1) 的最小值。

代价函数: J ( θ ) J(\theta) J(θ), 参数是 θ \theta θ, 或者称之为平方误差函数, 计算的是模型误差:
J = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J=\frac{1}{2m}\sum^m_{i=1}(h_{\theta}(x^{(i)})-y^{(i)})^2 J=2m1i=1m(hθ(x(i))y(i))2

梯度下降背后的思想是:开始时随机选择一个参数的组合 ( θ 0 , θ 1 , . . . . . . , θ n ) \left( {\theta_{0}},{\theta_{1}},......,{\theta_{n}} \right) (θ0,θ1,......,θn),计算代价函数,然后寻找下一个能让代价函数值下降最多的参数组合。持续这么做直到找到一个局部最小值(local minimum),因为并没有尝试完所有的参数组合,所以不能确定得到的局部最小值是否便是全局最小值(global minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。

在这里插入图片描述

简而言之就是当你正站立在山的某一点上,你要下山到一个"谷底"的地方,在梯度下降算法中,旋转360°,看看周围,在某个方向上用小碎步尽快下山。至于这些小碎步需要朝什么方向?就是环顾周围后身边的最低的一步(也就是代价函数导数最小的一个方向),重复上面的步骤,从这个新的点,环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到接近局部最低点的位置。

批量梯度下降(batch gradient descent)算法的公式为:

在这里插入图片描述

除了批量梯度下降, 还有随机梯度下降(stochastic gradient descent)和小批量梯度下降(mini-batch gradient descent), 在某些情况更有效果, 更加节省内存和时间

其中 α \alpha α是学习率(learning rate),它决定了沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,每一次都同时让所有的参数减去学习速率乘以代价函数的导数。

在这里插入图片描述

在梯度下降算法中,还有一个更微妙的问题,梯度下降中,要更新 θ 0 {\theta_{0}} θ0 θ 1 {\theta_{1}} θ1 ,当 j = 0 j=0 j=0 j = 1 j=1 j=1时,会产生更新,所以将更新 J ( θ 0 ) J\left( {\theta_{0}} \right) J(θ0) J ( θ 1 ) J\left( {\theta_{1}} \right) J(θ1)。实现梯度下降算法的微妙之处是,在这个表达式中,如果要更新这个等式,需要同时更新 θ 0 {\theta_{0}} θ0 θ 1 {\theta_{1}} θ1

θ 0 {\theta_{0}} θ0:= θ 0 {\theta_{0}} θ0 ,并更新 θ 1 {\theta_{1}} θ1:= θ 1 {\theta_{1}} θ1

.

2. 直观理解

2.1 学习率(learning rate) α \alpha α

梯度下降算法如下:

θ j : = θ j − α ∂ ∂ θ j J ( θ ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left(\theta \right) θj:=θjαθjJ(θ)

描述:对 θ \theta θ赋值,使得 J ( θ ) J\left( \theta \right) J(θ)按梯度下降最快方向进行,一直迭代下去,最终得到局部最小值。其中 α \alpha α是学习率(learning rate),它决定了沿着能让代价函数下降程度最大的方向向下迈出的步子有多大。

在这里插入图片描述

对于这个问题,求导的目的,基本上可以说取这个红点的切线,就是这样一条红色的直线,刚好与函数相切于这一点,这条红色直线的斜率,就是这条刚好与函数曲线相切的这条直线,这条直线的斜率正好是这个三角形的高度除以这个水平长度,现在,这条线有一个正斜率,也就是说它有正导数,因此,得到的新的 θ 1 {\theta_{1}} θ1 θ 1 {\theta_{1}} θ1更新后等于 θ 1 {\theta_{1}} θ1减去一个正数乘以 α \alpha α

这就是梯度下降法的更新规则: θ j : = θ j − α ∂ ∂ θ j J ( θ ) {\theta_{j}}:={\theta_{j}}-\alpha \frac{\partial }{\partial {\theta_{j}}}J\left( \theta \right) θj:=θjαθjJ(θ)

如果 α \alpha α太小或 α \alpha α太大会出现什么情况:

如果 α \alpha α太小了,即学习速率太小,结果就是只能这样像小宝宝一样一点点地挪动,去努力接近最低点,这样就需要很多步才能到达最低点,所以如果 α \alpha α太小的话,可能会很慢,因为它会一点点挪动,它会需要很多步才能到达全局最低点。

如果 α \alpha α太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到发现实际上离最低点越来越远,所以,如果 α \alpha α太大,它会导致无法收敛,甚至发散。

如果预先把 θ 1 {\theta_{1}} θ1放在一个局部的最低点,认为下一步梯度下降法会怎样工作?

假设将 θ 1 {\theta_{1}} θ1初始化在局部最低点,在这儿,它已经在一个局部的最优处或局部最低点。结果是局部最优点的导数将等于零,因为它是那条切线的斜率。这意味着已经在局部最优点,它使得 θ 1 {\theta_{1}} θ1不再改变,也就是新的 θ 1 {\theta_{1}} θ1等于原来的 θ 1 {\theta_{1}} θ1,因此,如果参数已经处于局部最低点,那么梯度下降法更新其实什么都没做,它不会改变参数的值。这也解释了为什么即使学习速率 α \alpha α保持不变时,梯度下降也可以收敛到局部最低点。

而且在逐步下降的过程中, 若已经选择了比较好的学习率 α \alpha α值, 由于 θ \theta θ值是会不断更新减小的, 所以下降的幅度也会自然的减小, 直到最终移动幅度非常小, 从而慢慢收敛到局部最低点

在这里插入图片描述
.

2.2 特征缩放 (feature scaling)

在面对多维特征问题的时候,要保证这些特征都具有相近的尺度,这将帮助梯度下降算法更快地收敛。

以房价问题为例,假设使用两个特征,房屋的尺寸和房间的数量,尺寸的值为 0-2000平方英尺,而房间数量的值则是0-5,以两个参数分别为横纵坐标,绘制代价函数的等高线图能,看出图像会显得很扁,梯度下降算法需要非常多次的迭代才能收敛。

在这里插入图片描述

解决的方法是尝试将所有特征的尺度都尽量缩放到-1到1之间。如图:

在这里插入图片描述

最简单的方法是令: x n = x n − μ n s n {{x}_{n}}=\frac{{{x}_{n}}-{{\mu}_{n}}}{{{s}_{n}}} xn=snxnμn,其中 μ n {\mu_{n}} μn是平均值, s n {s_{n}} sn是标准差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xxmoment

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值