第一篇文章介绍了卷积神经网络的数据输入形式和权值的初始化:CNN)卷积神经网络(一) 第二篇文章介绍了卷积操作,常用的激活函数(CNN)卷积神经网络(二)
第三篇介绍了卷积神经网络的池化层,可视化理解以及用数学的角度理解卷积操作:(CNN)卷积神经网络(三)
dropout
第一种理解方式
大家应该都有了解过集成学习吧,不了解也没关系,在我看来,集成学习最牛逼的想法就是利用自主采样的方式采集不同的样本子集,然后每个样本子集都
第一篇文章介绍了卷积神经网络的数据输入形式和权值的初始化:CNN)卷积神经网络(一) 第二篇文章介绍了卷积操作,常用的激活函数(CNN)卷积神经网络(二)
第三篇介绍了卷积神经网络的池化层,可视化理解以及用数学的角度理解卷积操作:(CNN)卷积神经网络(三)
dropout
第一种理解方式
大家应该都有了解过集成学习吧,不了解也没关系,在我看来,集成学习最牛逼的想法就是利用自主采样的方式采集不同的样本子集,然后每个样本子集都