(CNN)卷积神经网络(四)dropout

本文深入探讨了卷积神经网络(CNN)中的dropout技术,这是一种防止过拟合的有效策略。通过随机失活神经元,dropout创建了多个模型的集成,提升了模型的泛化能力。此外,文章通过实例解释了dropout如何帮助神经网络消除冗余信息,增强模型的代表性学习。
摘要由CSDN通过智能技术生成

第一篇文章介绍了卷积神经网络的数据输入形式和权值的初始化:CNN)卷积神经网络(一) 第二篇文章介绍了卷积操作,常用的激活函数(CNN)卷积神经网络(二)
第三篇介绍了卷积神经网络的池化层,可视化理解以及用数学的角度理解卷积操作:(CNN)卷积神经网络(三)
这里写图片描述

dropout

第一种理解方式
大家应该都有了解过集成学习吧,不了解也没关系,在我看来,集成学习最牛逼的想法就是利用自主采样的方式采集不同的样本子集,然后每个样本子集都

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值