离散时间信号的傅里叶变换,即DTFT(Discrete-Time Fourier Transform)
X(ejw) = Σ(n=–∞,∞)x(n)e-jwn ①
w为数字角频率
它是频率f对采样频率fs做归一化后的角频率。
w = 2πf/fs
X(ejw)是w的连续函数,以2π为周期。
①式不一定总是收敛。
收敛条件:
Σ(n=–∞,∞)Ιx(n)Ιe–jwn = Σ(n=–∞,∞)Ιx(n)Ι< ∞
即
X(ejw)绝对可和
有限长序列总是满足绝对可和
用ejwm 乘以 ① 式的两边,并在 w 的一个周期内积分
∫(–π,π)X(ejwm)dw
= ∫(–π,π)[Σ(n=–∞,∞)x(n)e–jwn]ejwm dw
=Σ(n=–∞,∞)x(n)∫(–π,π)ejw(m–n) dw
=2πΣ(n=–∞,∞)x(n)δ(m–n)
即
x(n) = 1/2π[∫(–π,π)X(ejw)ejwn]dw ②
X(ejw) = DTFT[x(n)]
x(n) = IDTFT[X(ejw)]
一般来说
X(ejw)是实变量w的复函数
实部和虚部表示:
X(ejw) = Re [X(ejw)] + jIm [ejw]
相位和幅度表示:
X(ejw) = ΙX(ejw)Ιejφ(w)
ΙX(ejw)Ι为离散序列x(n)的离散序列x(n)的幅度谱
φ(w)为离散序列x(n)的相位谱
离散时间信号的傅里叶变换
最新推荐文章于 2024-03-28 00:14:03 发布