离散时间信号的傅里叶表示

前言

离散时间信号的傅里叶变换与连续时间的傅里叶变换有很多相似之处,当然,也会有很多不同之处。我们可以借鉴连续时间傅里叶变换的情况。

本征函数属性

本征函数属性讲的是什么的?讲的是如果一个输入信号输入LTI系统,输出形式保持不变,只是有幅度上的差异,那么这个输入信号就具有本征函数的属性。典型的具有本征函数属性的信号就是复指数信号。
ϕ k [ n ] = e j Ω k n e j Ω k n → e j Ω k n ∑ r = − ∞ r = ∞ h [ r ] e − j Ω k r \phi_{k}[n]=e^{j\Omega_{k}n}\\e^{j\Omega_{k}n}\rightarrow e^{j\Omega_{k}n} \sum_{r=-\infty}^{r=\infty}h[r]e^{-j\Omega_{k}r} ϕk[n]=ejΩknejΩknejΩknr=r=h[r]ejΩkr
即输出信号等于输入信号乘以一个复数因子或常数。如同我们在连续时间信号处理中的一样,我们将这个复数常数写作 H ( Ω k ) H(\Omega_{k}) H(Ωk)。显然,这个复数常数是复指数输入的频率的函数。我们也将其称作为频率响应。

离散周期信号

我们首先考虑一个离散周期信号 x [ n ] x[n] x[n],周期由N表示。当然基频是 Ω 0 = 2 π N \Omega_{0}=\frac{2\pi}{N} Ω0=N2π。现在,我们考虑以这个基频对应的复指数信号 e j k Ω 0 n e^{jk\Omega_{0}n} ejkΩ0n。随着k的变化,这些复指数信号是谐波相关的,且他们的周期都为N。尽管他们的基本周期并不相同。

我们考虑用这些谐波建立一个周期信号:
x [ n ] = ∑ k a k e j k Ω 0 n x[n]=\sum_{k}a_{k}e^{jk\Omega _{0}n} x[n]=kakejkΩ0n
考虑到这些谐波都有一个共同的周期N,
x [ n ] = ∑ k = < N > a k e j k Ω 0 n x[n]=\sum_{k=<N>}a_{k}e^{jk\Omega _{0}n} x[n]=k=<N>akejkΩ0n
含义是随着k继续在[0,N-1]的区间外重复,这些傅里叶系数 a k a_{k} ak也是周期性地重复。

现在,我们想知道如何确定这个系数 a k a_{k} ak的。我们有一个非常方便的闭型计算公式:
a k = 1 N ∑ < N > x [ n ] e − j k Ω 0 n a_{k}=\frac{1}{N}\sum_{<N>}x[n]e^{-jk\Omega_{0}n} ak=N1<N>x[n]ejkΩ0n
上述两个公式便是离散傅里叶变换的总和公式。
这里,我们与连续时间下的傅里叶级数进行一下对比,看下异同点。
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t a k = 1 T 0 ∫ T 0 x ( t ) e − j k w 0 t d t x(t)=\sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t}\\a_{k}=\frac{1}{T_{0}}\int _{T_{0}}x(t)e^{-jkw_{0}t}dt x(t)=k=+akejkw0tak=T01T0x(t)ejkw0tdt
对比可以发现,在合成公式中,离散情况下只是一个周期内的级数和,而连续情况下是无穷区间内的级数和。这个区别的产生很大程度上是因为在离散时间情况中复指数会随着频率变化周期性地重复。

离散时间与连续时间对比

我们现在考虑一下有一个非周期信号 x ( t ) x(t) x(t) x ( t ) x(t) x(t)作为周期信号 x ~ ( t ) \tilde{x}(t) x~(t)的一个周期组成,周期信号 x ~ ( t ) \tilde{x}(t) x~(t)具有傅里叶级数。

随着周期信号 x ~ ( t ) \tilde{x}(t) x~(t)的周期趋近于无穷大时,这个周期信号代表了非周期信号,这个非周期信号具有傅里叶变换,可方便计算出系数项。

现在,对于离散时间情况,我们可以做同样的事情。

傅里叶框架

在傅里叶变换更为广泛的框架下,融入傅里叶级数。
傅里叶级数和傅里叶变换有两种关系。
在连续时间中,我们有这样的说法,如果我们有一个周期信号,实际上这个周期信号的傅里叶级数系数与一个周期的傅里叶变换样本成正比。

离散时间傅里叶变换

x [ n ] = 1 2 π ∫ 2 π X ( Ω ) e j Ω n d Ω X ( Ω ) = ∑ n = − ∞ + ∞ x [ n ] e − j Ω n x[n]=\frac{1}{2\pi}\int_{2\pi}X(\Omega)e^{j\Omega n}d\Omega\\ X(\Omega)=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\Omega n} x[n]=2π12πX(Ω)ejΩndΩX(Ω)=n=+x[n]ejΩn
x ( t ) → X ( Ω ) X ( Ω ) = R e X ( Ω ) + j I m X ( Ω ) x(t)\rightarrow X(\Omega)\\ X(\Omega)=Re X(\Omega)+j ImX(\Omega) x(t)X(Ω)X(Ω)=ReX(Ω)+jImX(Ω)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值