神经网络-随笔

对于神经网络中,卷积核filter的理解
比如:一张彩色的图片要三通道,这张彩色图片输入到神经网络当中,首先,他要进行卷积操作,在卷积的过程中,假如有两个卷积核,这两个卷积核分别拿出一个卷积核,对这个图片进行三通道的一个卷积,这样子,我们就得到一个三通道的,另一个维度的特征。这样子的话,另一个卷积核也这样,最后得到的是六个通道,然后每三个通道进行一个特征通道的一个叠加,形成一个彩色图片的一个特征图谱,最后出来有两个彩色图片,也就是两个特征图谱,这两张特征图谱的维度取决于,卷积核的维度。卷积核filter如果有深度的话,应该代表说他有多少个卷积核。
多通道卷积过程
多通道卷积的过程,就是说有很多个卷积核,每个卷积核有三通道,因为输入的图片是一张彩色图片,他是三通道的,然后每个卷积和里面的通道数的卷积特征是不一样的,分别跟他对应的绿蓝红通道进行卷积,各自对应卷积得到一个三通道的一个特征图谱,并且将这三个通道进行一个叠加,就得到一个特征图谱通道,这个特征图谱通道,他是他彩色通道是不一样的,然后这样多个卷积和卷积出来就叫做多通道卷积,也就是说,最后出来是一个多通道的特征图谱,然后再将这个特征图谱进行个累加,最后得出一张最好后的特征图谱。
实际上,真实的情况是,卷积过程中,输入层有多少个通道,滤波器就要有多少个通道,但是滤波器的数量是任意的,滤波器的数量决定了卷积后 featuremap 的通道数。


个人理解cnn网络结构
cnn他将一张三通道的输入图片进行一个卷积操作,提取出明显的特征,并且简化像素点,经过之后,最后提取出来的是一个高阶特征图谱,将这个高阶特征图谱,将三个通道的高阶特征图谱进行感受野的部分输入。
那怎么叫做感受野的输入呢,将这个图谱划分区域为3*3多个网络框,然后,拉伸成为一个维度的向量,进行全连接层输入,与真实的图片,进行反向传播求偏导。求出w,h权重值。

正则化的本质是对某一问题加以先验的限制或约束(如L1范数和L2范数),以达到某种特定目的的一种手段或操作(函数的稀疏或者平滑)。在算法中使用正则化的目的是防止模型出现过拟合。那问题来了,函数的稀疏,就是说防止过拟合的意思,函数平滑就是说,防止函数根据目标特征来绘画出区分类别的直线,这样保持了之前已有的f(x)函数特征曲线。


为啥卷积核可以提取边缘和特征呢?
因为他用到了边缘提取的算法,最后确认出卷积核
全连接层和隐藏层它是拟合出一条线性回归的分类直线,更好的分类模型,当然这样会导致过拟合,模型泛化能力不行,所以,需要卷积,提取出抽象泛化能力强,个体代表所有,高级的特征。
卷积神经网络的理解,嘿嘿。
第一
经过卷积核,将一张图片多个的权重,变成了卷积核里的权重数量。大大减小了哦,防止过拟合作用。经过多个卷积核,提取出多个明显特征提取,将这些特征输入到全连接层,进行数据处理,分类。
卷积出来的各种特征图谱,它是由物体身上的各种特征组成的,比如耳朵嘴巴等等。不同卷积核参数可能不一定能提取到这些特征,有些提取到了头发指甲然后叠加成另一张图谱。最后,我们通过这些特征图谱输入到全连接层,找到这些的特征图谱的拟合参数,然后,分类,输出不同分类概率,分类概率高(找到一个分类最好的拟合曲线)即为那个物体,最后,用反向传播的思想求出它的卷积核参数。
预训练模型作用,它是人为规定,比如猫,就需要有猫耳朵,胡须,尾巴等的特征,如果,卷积核提取出来的特征没有这些,那么这个卷积核就不合格,也就是对不上啦,因为,这张图片输入进去训练的时候,我们是知道的他就是猫,我们目的是为了找到这样的卷积核权重,然后,输入,任一张图片,都能输出这些特征的概率高,那这只动物就是猫。

第一次给卷积核的值就是随机的,然后神经网络会得出loss,一般第一次随机给的权重得到的loss都比较高,然后神经网络根据误差反算更新权重,然后再次前向。

预训练模型的作用:迁移学习,它是将你训练出来的卷积核权重,然后去预训练的模型上跑,从而,反馈给你,你训练出来的权重好不好。预训练模型是很大数据上面训练出来的优质的模型。

对于卷积的深度理解
卷积是提取出高阶特征,比如猫耳朵,猫眼睛,猫鼻子,猫胡须。把这些特征提取出来,汇聚到一个二维的坐标上面去,这些我们刚开始是不能准确的提取出这些高阶特征的,因为我们的卷积核参数是随便给的,不是具体的。这个时候我们把这些特征提取出来的特征放到特征图谱,特征图谱将这些特征转化成二维的坐标,上面的一些特征,然后我们通过分类和回归,把这些特征拟合出一条函数直线,对这些特征进行分类(当曲线拟合出来时,卷积核的权重也被得出),然后我们这个时候,假设如果这个,拟合出来的曲线,他具备了能够辨别猫和狗的一个曲线,也就是说,它是不是一只猫?能不能分辨出来,通过这一条拟合出来的曲线。然后我们这个群中进行迁移,通过迁移学习,将这个卷积核的权重迁移到一个晕训练模型进去,如果这个卷积核的权重,它能够在这个预训练模型上面跑出是不是猫的正确结果,如果不正确进行,重新反向传播训练权重值。
全连接层
转化问题,将不同特征图谱上的高阶特征像素进行叠加汇总,然后,转化成关于w权重曲线,然后,进行拟合出曲线,因为特征图谱上面还有一些其他的像素点,我们目的就是要找出目标高级特征像素点,用sigmoid或者relu将他们围起来或者区分开来,转化成了,w的方程和概率问题。如:y=1/1-exp(z1)多个z相加(z1=wx+b),最后进行化简。

在某知上对卷积神经网络的理解
虽然同一只猫和狗,但是采集的时候暗度和亮度不一致,则得出的结果也不一致。因为提取出来的像素点也不一致,最后,进入全连接层也不一致,导致我们训练的结果都不一致,所以说。为什么要数据增强呢,但是,这可能导致结果有偏差。比如,同一只猫和狗的图片,在暗和凉的情况下,我们可以适当将输入进来的图片统一处理调节一定亮度,然后在进行卷积等操作到全连接层。但是,也可能出现另一种情况,就是。他是一只狗,被你调节亮了点,它成了一只猫啦。还有另一种解决办法,那就是采集一些暗点的猫的数据。记住了,全连接层,他是有限制的,他不可能所有特征,都能表达出一个模型,他需要大数据,做到无限逼近的可能。
sigmiod函数起到了数据分类作用,而线性函数起到了数据模型作用,输入进来的x起到了数据集的作用。不同的w的权重不同,获取到的特征也不同,它激活的隐藏层(感知机、神经元)也不同,分类出的结果也不同。w起到调整sigmoid函数的分类,w越准确分类越准确,模型越准确,即全连接层越准确,通过loss就可以返回来调节w,使w的值越准确,这个调节w过程就是训练的一个过程。由于sigmoid之后的函数处理,使得输出变成了(0到1区间),由于softmax它是目标的sigmoid除以所有sigmiod的概率,目标概率只有1和0。进行两者求差,反向传播偏导,调节w。

调节w的过程,
其实对于多分类问题下,梯度下降法应该是这样的:
一般来说,因为神经网络的复杂性,我们在训练时会选择一个损失函数(loss function),而非感知机单纯的对/错,来衡量训练时的损失。
比如说对于猫/狗/鸡分类问题,我们可以把神经网络输出的概率值和期望值之间的norm1,作为损失函数。比如说输出的概率是【0.8 0.1 0.1】,期望值是【1 0 0】(代表正确分类是猫),那么损失为0.2+0.1+0.1=0.4。
这时候就可以利用反向传播(back propagation)来计算每个感知机的参数更新值,方法类似于复合函数求导。假设最后一层没有激活函数(实际上分类问题一般会用softmax函数,但这里为了简略就不讲了),那么就有loss=(1-w1@x)+w2@x+w3@x,对于负责输出「猫」的概率的感知机而言,易得其偏导d(loss)/d(w1)=-x,若设定学习率(learning rate)为1,那么只要把「猫」感知机的参数减去x即可更新,其余以此类推。
当然实际上多分类问题一般会用交叉熵(Cross-Entropy)来作为损失函数,不过这个就要复杂的多了。

最后,来说说卷积层到输入层过度的过程讲解。
由于输入进来的数据,它是一个物体多个特征提取出来的结果,我将这些数据进行一个权重处理相加,多元化的结合和统计,输出多个权重隐藏层,得到一个多个权重的多元函数体,然后,通过sigmoid我们进行分类,最后,我们就知道,哪些特征是必须的,才能满足它是猫的一个分类,也就是哪些w的调节,使得它这些特征是必须的,才能使得它为一只猫的得分最大,即趋近于1的得分。
 

知识点有些零散,请大家见谅,希望能够帮助大家。

  • 20
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值