Pytorch模型编译报错 UserWarning: (Resize(), RandomResizedCrop(), etc.)——解决办法

文章讲述了在Pytorchv0.17中,由于Resize等缩放转换的antialias参数默认值改变,用户在训练模型时会遇到警告。解决方法是显式设置antialias参数为True。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、问题描述

  • 使用Pytorch训练模型时,编译报错: 
    • UserWarning: The default value of the antialias parameter of all the resizing transforms (Resize(), RandomResizedCrop(), etc.) will change from None to True in v0.17, in order to be consistent across the PIL and Tensor backends.
      To suppress this warning, directly pass antialias=True (recommended, future default), antialias=None (current default, which means False for Tensors and True for PIL), or antialias=False (only works on Tensors - PIL will still use antialiasing). 
      This also applies if you are using the inference transforms from the models weights: update the call to weights.transforms(antialias=True).
  • UserWarning:所有调整大小变换(Resize()、RandomResizedCrop()等)的抗锯齿参数的默认值将在v0.17中从无变为有,以便在PIL和张量后端保持一致。
  • 要取消此警告,请直接传递antialias=True(推荐,未来的默认值),antialias=None(当前默认值,对于张量为False,对于PIL为True),或antialias=False(仅适用于张量- PIL仍将使用抗锯齿)。
  • 如果您使用模型权重的推理转换,这也适用:更新对weights.transforms的调用(antialias=True)。 

2、解决办法

  • 这个警告信息是与缩放转换中的抗锯齿参数(antialias)默认值变更有关,将在v0.17版本中生效。
  • 简单来说就是需要给Resize()加上antialias参数。
  • 原来为
    • transforms.Resize(60)
  • 修改为
    • transforms.Resize(60, antialias=True)
  • 【注】 antialias=True表示启用抗锯齿功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恣睢s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值