CVAE-GAN——生成0-9数字图像(Pytorch+mnist)

文章介绍了CVAE-GAN模型,它结合了CVAE和GAN的思想,用于学习数据潜在表示并生成高质量的条件依赖数据。文章详细解释了模型结构、编码器、解码器和判别器的作用,以及如何通过训练优化损失函数,以应用于数字图像生成,如MNIST数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、简介

  • CVAE-GAN(Conditional Variational Autoencoder Generative Adversarial Network)是一种混合型生成模型,结合了条件变分自编码器(CVAE)和生成对抗网络(GAN)的思想。
    • 【注】这里的CVAE-GAN是指将CVAE作为GAN的生成器。
  • 在CVAE-GAN中,CVAE的编码器和解码器被结合在一起,作为GAN的生成器,用于学习数据的潜在表示和生成数据。同时,GAN的判别器帮助训练生成器生成更逼真的数据。
  • CVAE-GAN的工作方式如下:
    • 编码器(Encoder):接收输入数据和条件信息,并将其映射到潜在空间中的潜在表示。
    • 解码器(Decoder/Generator):接收从潜在空间中采样的潜在表示和条件信息,并生成与条件信息相关的数据样本。
    • 判别器(Discriminator):接收真实样本和生成样本(包括条件信息),并尝试将它们区分开来。
    • 损失函数:CVAE-GAN的损失函数通常包括两部分:一部分是CVAE的重构损失,用于确保生成数据与输入数据相似;另一部分是GAN的对抗损失,用于鼓励生成数据与真实数据分布相匹配。
  • CVAE-GAN通过结合CVAE和GAN的优点,既可以学习数据的潜在表示,又可以生成高质量的数据样本,并且可以通过条件信息控制生成过程。这种结合使得CVAE-GAN在诸如图像生成、图像编辑等任务中具有很好的表现。
  • 本文利用CVAE-GAN,输入数字图像和对应的标签。训练后,生成0-9数字图像。
    • (epoch=10)
    • (epoch=20)
    • (epoch=30)
    • (epoch=40)
    • (epoch=50)

2、代码

2.1、生成器(Genration.py)

  • import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    # 变分自编码器
    class CVAE(nn.Module):
        def __init__(self, input_size, num_classes):
            super(CVAE, self).__init__()
            self.num_classes = num_classes  # 标签数量
            self.input_size = input_size
            self.potential_size = 64  # 潜在空间大小
    
            # 编码器层
            self.fc1 = nn.Linear(self.input_size + self.num_classes, 512)  # 编码器输入层
            self.fc2 = nn.Linear(512, self.potential_size)
            self.fc3 = nn.Linear(512, self.potential_size)
    
            # 解码器层
            self.fc4 = nn.Linear(self.potential_size + self.num_classes, 512)  # 解码器输入层
            self.fc5 = nn.Linear(512, self.input_size)  # 解码器输出层
    
        # 编码器部分
        def encode(self, x):
            x = F.relu(self.fc1(x))  # 编码器的隐藏表示
            mu = self.fc2(x)  # 潜在空间均值
            log_var = self.fc3(x)  # 潜在空间对数方差
            return mu, log_var
    
        # 重参数化技巧
        def reparameterize(self, mu, log_var):  # 从编码器输出的均值和对数方差中采样得到潜在变量z
            std = torch.exp(0.5 * log_var)  # 计算标准差
            eps = torch.randn_like(std)  # 从标准正态分布中采样得到随机噪声
            return mu + eps * std  # 根据重参数化公式计算潜在变量z
    
        # 解码器部分
        def decode(self, z):
            z = F.relu(self.fc4(z))  # 将潜在变量 z 解码为重构图像
            return torch.sigmoid(self.fc5(z))  # 将隐藏表示映射回输入图像大小,并应用 sigmoid 激活函数,以产生重构图像
    
        # 前向传播
        def forward(self, x, y):  # 输入图像 x,标签 y 通过编码器和解码器,得到重构图像和潜在变量的均值和对数方差
            x = torch.cat([x, y], dim=1)
            mu, log_var = self.encode(x)
            z = self.reparameterize(mu, log_var)
            z = torch.cat([z, y], dim=1)
            return self.decode(z), mu, log_var
    
        # 使用重构损失和 KL 散度作为损失函数
        def generator_loss(self, recon_x, x, mu, log_var):  # 参数:重构的图像、原始图像、潜在变量的均值、潜在变量的对数方差
            MSE = F.mse_loss(recon_x, x.view(-1, self.input_size), reduction='sum')  # 计算重构图像 recon_x 和原始图像 x 之间的均方误差
            KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())  # 计算潜在变量的KL散度
            return MSE + KLD  # 返回二进制交叉熵损失和 KLD 损失的总和作为最终的损失值

2.2、判别器(Discriminator.py)

  • import torch
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    # 定义判别器类
    class Discriminator(nn.Module):
        def __init__(self, input_size, num_classes):
            super(Discriminator, self).__init__()
            self.num_classes = num_classes  # 标签数量
            self.input_size = input_size
    
            # 判别器层
            self.fc1 = nn.Linear(self.input_size + self.num_classes, 512)
            self.fc2 = nn.Linear(512, 256)
            self.fc3 = nn.Linear(256, 1)
    
        def forward(self, x):
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            return torch.sigmoid(self.fc3(x))

2.3、训练(train.py)

  • from Discriminator import Discriminator
    from Genration import CVAE
    import torch
    import torch.optim as optim
    import torchvision
    import torch.nn.functional as F
    from torchvision.utils import save_image
    
    
    # 生成0-9数字
    def sample_images(epoch):
        with torch.no_grad():  # 上下文管理器,确保在该上下文中不会进行梯度计算。因为在这里只是生成样本而不需要梯度
            number = 10
            # 生成标签
            sample_labels = torch.arange(10).long().to(device)  # 0-9的标签
            sample_labels_onehot = F.one_hot(sample_labels, num_classes=10).float()
            # 生成随机噪声
            sample = torch.randn(number, latent_size).to(device)  # 生成一个形状为 (64, latent_size) 的张量,其中包含从标准正态分布中采样的随机数
            sample = torch.cat([sample, sample_labels_onehot], dim=1)  # 连接图片和标签
    
            sample = cvae_model.decode(sample).cpu()  # 将随机样本输入到解码器中,解码器将其映射为图像
            save_image(sample.view(number, 1, 28, 28), f'sample{epoch}.png', nrow=int(number / 2))  # 将生成的图像保存为文件
    
    
    def generator_loss(recon_x, x, mu, log_var, discriminator_output):
        mse_loss = F.mse_loss(recon_x, x.view(-1, input_size), reduction='sum')  # 计算重构图像 recon_x 和原始图像 x 之间的均方误差
        kld_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
        gan_loss = F.binary_cross_entropy(discriminator_output, torch.ones_like(discriminator_output))
        return mse_loss + kld_loss + gan_loss
    
    
    def discriminator_loss_acc(real_output, fake_output):
        # 损失
        real_loss = F.binary_cross_entropy(real_output, torch.ones_like(real_output))
        fake_loss = F.binary_cross_entropy(fake_output, torch.zeros_like(fake_output))
        total_loss = real_loss + fake_loss
        # 精度
        real_pred = torch.round(real_output)
        fake_pred = torch.round(fake_output)
        real_acc = (real_pred == 1).sum().item() / real_output.numel()
        fake_acc = (fake_pred == 0).sum().item() / fake_output.numel()
        total_acc = (real_acc + fake_acc) / 2
        return total_loss, total_acc
    
    
    if __name__ == '__main__':
        batch_size = 512  # 批次大小
        epochs = 50  # 学习周期
        sample_interval = 10  # 保存结果的周期
        learning_rate = 0.001  # 学习率
        input_size = 784  # 输入大小
        num_classes = 10  # 标签数量
        latent_size = 64  # 噪声大小
    
        # 载入 MNIST 数据集中的图片进行训练
        transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])  # 将图像转换为张量
    
        train_dataset = torchvision.datasets.MNIST(
            root="~/torch_datasets", train=True, transform=transform, download=True
        )  # 加载 MNIST 数据集的训练集,设置路径、转换和下载为 True
    
        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=batch_size, shuffle=True
        )  # 创建一个数据加载器,用于加载训练数据,设置批处理大小和是否随机打乱数据
    
        # 配置要在哪个设备上运行
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    
        cvae_model = CVAE(input_size, num_classes).to(device)
        dis_model = Discriminator(input_size, num_classes).to(device)
    
        optimizer_cvae = optim.Adam(cvae_model.parameters(), lr=learning_rate)
        optimizer_dis = optim.Adam(dis_model.parameters(), lr=learning_rate)
    
        for epoch in range(epochs):
            generator_loss_total = 0
            discriminator_loss_total = 0
            discriminator_acc_total = 0
            for batch_idx, (data, labels) in enumerate(train_loader):
                data = data.to(device)
                data = data.view(-1, input_size)
    
                labels = F.one_hot(labels, num_classes).float().to(device)
    
                # 更新判别器
                optimizer_dis.zero_grad()
    
                recon_batch, _, _ = cvae_model(data, labels)  # 生成虚假数据
                fake_data = torch.cat([recon_batch, labels], dim=1)
                real_data = torch.cat([data, labels], dim=1)
    
                fake_output = dis_model(fake_data)
                real_output = dis_model(real_data)
    
                d_loss, d_acc = discriminator_loss_acc(real_output, fake_output)  # 计算判别器损失和精度
                d_loss.backward()
                optimizer_dis.step()  # 更新模型参数
    
                # 更新生成器
                optimizer_cvae.zero_grad()
    
                recon_batch, mu, log_var = cvae_model(data, labels)
                fake_data = torch.cat([recon_batch, labels], dim=1)
                fake_output = dis_model(fake_data)
    
                g_loss = generator_loss(recon_batch, data, mu, log_var, fake_output)
                g_loss.backward()
                optimizer_cvae.step()
    
                generator_loss_total += g_loss.item()
                discriminator_loss_total += d_loss.item()
                discriminator_acc_total += d_acc
    
            generator_loss_avg = generator_loss_total / len(train_loader)
            discriminator_loss_avg = discriminator_loss_total / len(train_loader)
            discriminator_acc_avg = discriminator_acc_total / len(train_loader)
    
            print('Epoch [{}/{}], Generator Loss: {:.3f}, Discriminator Loss: {:.3f}, Discriminator Acc: {:.2f}%'.format(
                epoch + 1, epochs, generator_loss_avg, discriminator_loss_avg, discriminator_acc_avg * 100))
    
            if (epoch + 1) % sample_interval == 0:
                sample_images(epoch + 1)
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

恣睢s

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值