[The Path to QUANT] 《Volatility Trading》by Euan Sinclair 读书笔记 Chapter 1

Chapter 1 期权定价

《波动率交易》一书阅读笔记,交叉参照英文原版及机械工业出版社翻译版。
Chapter1勘误:英文原版第一版中组合价值变化公式最后一项符号为 + + +,在第二版中调整为 − - ,应以第二版为准。

Black-Scholes-Merton Model

首先构建的是一个delta对冲的组合。英文原版中描述为‘delta-hedged portfolio’, 翻译版中使用的词汇是“delta中性”,delta-hedged和delta-neutral是否有细微区别此处存疑。

期权的基本属性

在讨论具体的计算之前,可以首先定义出期权的一些基本属性。

  • 当合约标的上涨(下跌)时,call(put) option变得更有价值,因为此时期权成为实值的可能性提高。(delta/gamma)
  • 期权的价值永远不会比合约标的的价格(即行权价格)更高。
  • 随着时间的流逝,期权价值将下降,因为期权变为实值的时间减少了。(theta)
  • 期权价值与不确定性正相关,不确定性越强,期权价值越高。(volatility)
  • 利率上升,期权价值下降,因为提高了融资购买期权的成本。(rho)
  • 股息的发放提升put option value,降低call option value,因为股息的发放会降低标的价格。

BSM公式与期权的公允价值

对于一个delta对冲的组合,由一份long call option和 Δ \Delta Δ份 short stock构成,其价值为:
C ( S t ) − Δ S t C(S_t)-\Delta S_t C(St)ΔSt
在t+1的时刻,投资组合的价值变化由期权和股票头寸的价值变化,以及为了构建这个组合而产生的融资成本构成。因此,在t+1时刻,组合的价值变化为:
( C ( S t + 1 ) − Δ S t + 1 ) − ( C ( S t ) − Δ S t ) − r ( C ( S t ) − Δ S t ) = ( C ( S t + 1 ) − C ( S t ) ) − ( Δ S t + 1 − Δ S t ) − r ( C ( S t ) − Δ S t ) (C(S_{t+1})-\Delta S_{t+1})-(C(S_t)-\Delta S_t)-r(C(S_t)-\Delta S_t)\\ =(C(S_{t+1})-C(S_t))-(\Delta S_{t+1}-\Delta S_t)-r(C(S_t)-\Delta S_t) (C(St+1)ΔSt+1)(C(St)ΔSt)r(C(St)ΔSt)=(C(St+1)C(St))(ΔSt+1ΔSt)r(C(St)ΔSt)
最后一项是加入了融资成本的考量。买入option产生了负的现金流而卖出stock产生了正的现金流,因此对于组合的持有者来说,这一部分产生了 r ( C ( S t ) − Δ S t ) r(C(S_t)-\Delta S_t) r(C(St)ΔSt)的成本。由于间隔时间非常短,因此在接下来的推导中假设delta在t到t+1的时间变化内不发生改变。
Underlying price对option value的影响,在这里使用Taylor Expansion近似,同时,在其他条件不变时,时间会对期权价格产生影响,这部分的影响直接用 θ \theta θ表示。

Taylor Expansion

https://www.zhihu.com/question/25627482/answer/313088784
知乎:怎样更好地理解并记忆泰勒展开式?

泰勒展开使用多项式对复杂函数进行近似,即保证初始值一致、初始值处导数相同,二阶导数相同……在此思想上,选择原函数 f ( x ) f(x) f(x)上的一点 0 , f ( 0 ) 0, f(0) 0,f(0),设近似曲线的解析式为 g ( x ) g(x) g(x),则 g ( x ) g(x) g(x)为一个n阶多项式,其形式为:
g ( x ) = a 0 + a 1 x + a 2 x 2 + ⋯ + a n x n g(x)=a_0+a_1x+a_2x^2+\dots+a_nx^n g(x)=a0+a1x+a2x2++anxn
由于初始点相同,即保证 f ( 0 ) = g ( 0 ) = a 0 f(0)=g(0)=a_0 f(0)=g(0)=a0,由于n阶导数相同,即保证 f n ( 0 ) = g n ( 0 ) f^n(0)=g^n(0) fn(0)=gn(0),对于多项式 g ( x ) g(x) g(x),其n阶导数为 n ! a n n!a_n n!an,因此求出 a n = f n ( 0 ) n ! a_n=\frac{f^n(0)}{n!} an=n!fn(0),故:
g ( x ) = g ( 0 ) + f 1 ( 0 ) 1 ! x + f 2 ( 0 ) 2 ! x 2 + ⋯ + f n ( 0 ) n ! x n g(x)=g(0)+\frac{f^1(0)}{1!}x+\frac{f^2(0)}{2!}x^2+\dots+\frac{f^n(0)}{n!}x^n g(x)=g(0)+1!f1(0)x+2!f2(0)x2++n!fn(0)xn
在此基础上,将初始点从0推广至任意 x 0 x_0 x0即可得到:
f ( x ) ≈ g ( x ) = f ( x 0 ) + f 1 ( x 0 ) 1 ! ( x − x 0 ) + f 2 ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f n ( x 0 ) n ! ( x − x 0 ) n f(x)\approx g(x)=f(x_0)+\frac{f^1(x_0)}{1!}(x-x_0)+\frac{f^2(x_0)}{2!}(x-x_0)^2+\dots+\frac{f^n(x_0)}{n!}(x-x_0)^n f(x)g(x)=f(x0)+1!f1(x0)(xx0)+2!f2(x0)(xx0)2++n!fn(x0)(xx0)n
注意此处的约等于,只要n不是正无穷,则约等号必须保留,换句话说,泰勒公式可以写成:
f ( x ) = g ( x ) = ∑ n = 0 + ∞ f n ( x 0 ) n ! ( x − x 0 ) n f(x)=g(x)=\sum_{n=0}^{+\infty}\frac{f^n(x_0)}{n!}(x-x_0)^n f(x)=g(x)=n=0+n!fn(x0)(xx0)n
在此基础上,组合的价值推导如下,初始点选择为 S t S_t St
C ( S t + 1 ) ≈ C ( S t ) + ∂ C ( S t ) ∂ S t ( S t + 1 − S t ) + 1 2 ∂ 2 C ( S t ) ∂ S t 2 ( S t + 1 − S t ) 2 + θ C(S_{t+1})\approx C(S_t)+\frac{\partial C(S_t)}{\partial S_t}(S_{t+1}-S_t)+\frac{1}{2}\frac{\partial^2C(S_t)}{\partial S_t^2}(S_{t+1}-S_t)^2+\theta C(St+1)C(St)+StC(St)(St+1St)+21St22C(St)(St+1St)2+θ
此外还有上文所说时间对期权价格的影响 θ \theta θ。在这里,underlying price对option value的影响使用的二阶导数,而时间对期权价格的影响仅使用了一阶导数。在第一章中,作者认为合约标的的价格变化是随机的,因此这是一种风险(risk),而时间的流逝是可预期的,因此这是一种成本(cost)
因此可以推出公式:
C ( S t ) + ∂ C ( S t ) ∂ S t ( S t + 1 − S t ) + 1 2 ∂ 2 C ( S t ) ∂ S t 2 ( S t + 1 − S t ) 2 + θ − C ( S t ) − Δ ( S t + 1 − S t ) − r ( C ( S t ) − Δ S t ) = 1 2 ( S t + 1 − S t ) 2 Γ + θ − r ( C ( S t ) − Δ S t ) C(S_t)+\frac{\partial C(S_t)}{\partial S_t}(S_{t+1}-S_t)+\frac{1}{2}\frac{\partial^2C(S_t)}{\partial S_t^2}(S_{t+1}-S_t)^2+\theta-C(S_t)-\Delta(S_{t+1}-S_t)-r(C(S_t)-\Delta S_t)\\ =\frac{1}{2}(S_{t+1}-S_t)^2\Gamma+\theta-r(C(S_t)-\Delta S_t) C(St)+StC(St)(St+1St)+21St22C(St)(St+1St)2+θC(St)Δ(St+1St)r(C(St)ΔSt)=21(St+1St)2Γ+θr(C(St)ΔSt)
(显然, ∂ C ( S t ) ∂ S t = Δ , ∂ 2 C ( S t ) ∂ S t 2 = Γ \frac{\partial C(S_t)}{\partial S_t}=\Delta,\frac{\partial^2C(S_t)}{\partial S_t^2}=\Gamma StC(St)=Δ,St22C(St)=Γ
因此,以上公式给出了当股票价格发生微小变化时,组合持有者所获得的利润。它由三部分组成:

  1. gamma效应。由于gamma为正,因此期权多头可以盈利,利润大致相当于股票价格变化的平方的一半。
  2. theta效应。由于theta为负,随着时间的流逝,期权多头会损失价值。
  3. 融资影响。

从平均上说:
( S t + 1 − S t ) 2 ≅ σ 2 S 2 (S_{t+1}-S_t)^2\cong\sigma^2S^2 (St+1St)2σ2S2
其中 σ \sigma σ即underlying returns的standard derivation,也就是波动率volatility。因此,可以将公式改写为:
1 2 σ 2 S 2 Γ + θ − r ( C ( S t ) − Δ S t ) \frac{1}{2}\sigma^2S^2\Gamma+\theta-r(C(S_t)-\Delta S_t) 21σ2S2Γ+θr(C(St)ΔSt)
假定组合无风险,则组合不能产生任何非正常收益,即收益为0,因此,期权的公允价格应该满足等式:
1 2 σ 2 S 2 Γ + θ − r ( C ( S t ) − Δ S t ) = 0 \frac{1}{2}\sigma^2S^2\Gamma+\theta-r(C(S_t)-\Delta S_t)=0 21σ2S2Γ+θr(C(St)ΔSt)=0
在这个推导过程中,有三个隐含假设,即:

  • 有可交易的标的且允许卖空存在,同时能以任何交易量交易且不产生任何费用
  • 融资成本和投资成本相同且保持不变,均为r
  • 标的价格变化连续且平滑,否则则出现不可导的点。这是一个强假设,在现实生活中,资产价格的连续性假设并不成立,因此方向依赖(directional dependence)现象会出现。

在上式中,资产的价格变化没有体现,但是资产价格变化的平方通过波动率项反映在公式中。因此,一个持有delta对冲组合的交易员能否获利的关键就在于合约标的价格的变化幅度。无论资产收益率是否服从正态分布,只要资产收益率有一个有限的方差,这个结论就会成立。
一旦期权和标的合约都在市场上进行公开交易,那么收益将与隐含波动率和已实现波动率的差成比例,即收益部分在于:
1 2 ( σ r e a l 2 − σ i m p l i e d 2 ) S 2 Γ \frac{1}{2}(\sigma_{real}^2-\sigma_{implied}^2)S^2\Gamma 21(σreal2σimplied2)S2Γ
又因为vega体现了期权价值对合约标的价格波动率的敏感程度,即隐含波动率每变化一个百分点,期权价值相应的变化,因此,收益也可以表示为:
v e g a ( σ r e a l − σ i m p l i e d ) vega(\sigma_{real}-\sigma_{implied}) vega(σrealσimplied)
以上两式可以得到gamma和vega之间的关系为 v e g a = σ T S 2 Γ vega=\sigma TS^2\Gamma vega=σTS2Γ,但是这个关系对于交易并没有太大的帮助。

书中不加证明的给出了vega和gamma之间的关系,找到的相关reference为:
http://www.fabiomercurio.it/VegaGammaRelationship.pdf

关于波动率变化带来的收益 v e g a ( σ r e a l − σ i m p l i e d ) vega(\sigma_{real}-\sigma_{implied}) vega(σrealσimplied),也可以用以下推导得出:
假设现在持有一份根据隐含波动率 σ i m p l i e d 2 \sigma_{implied}^2 σimplied2进行初始定价的看涨期权 C ( σ i m p l i e d 2 ) C(\sigma_{implied}^2) C(σimplied2),当波动率由 σ i m p l i e d 2 \sigma_{implied}^2 σimplied2变化至 σ 2 \sigma^2 σ2时,期权价格变化,产生了收益。定义 δ = σ 2 − σ i m p l i e d 2 \delta=\sigma^2-\sigma_{implied}^2 δ=σ2σimplied2,可以得知新期权的价格:
C ( σ 2 ) = C ( σ i m p l i e d 2 + δ ) = C ( σ i m p l i e d 2 ) + δ ∂ C ∂ ( σ 2 ) C(\sigma^2)=C(\sigma_{implied}^2+\delta)=C(\sigma_{implied}^2)+\delta\frac{\partial C}{\partial(\sigma^2)} C(σ2)=C(σimplied2+δ)=C(σimplied2)+δ(σ2)C
δ \delta δ是一个增加量,那么加上 δ \delta δ后的call value相当于在原call value的基础上加上 δ \delta δ倍方差的一阶导。
最后一项中:
∂ C ∂ ( σ 2 ) = ∂ C ∂ σ ∂ σ ∂ ( σ 2 ) = v e g a × 1 2 σ \frac{\partial C}{\partial(\sigma^2)}=\frac{\partial C}{\partial\sigma}\frac{\partial\sigma}{\partial(\sigma^2)}=vega\times\frac{1}{2\sigma} (σ2)C=σC(σ2)σ=vega×2σ1
因此,损益项(PNL) δ ∂ C ∂ ( σ 2 ) \delta\frac{\partial C}{\partial(\sigma^2)} δ(σ2)C可以变为:
δ × v e g a × 1 2 σ = ( σ 2 − σ i m p l i e d 2 ) × v e g a × 1 2 σ = σ + σ i m p l l i e d 2 σ × v e g a × ( σ − σ i m p l l i e d ) ≈ v e g a ( σ − σ i m p l l i e d ) \delta\times vega\times\frac{1}{2\sigma}=(\sigma^2-\sigma_{implied}^2)\times vega\times\frac{1}{2\sigma}\\ =\frac{\sigma+\sigma_{impllied}}{2\sigma}\times vega\times(\sigma-\sigma_{impllied})\\ \approx vega(\sigma-\sigma_{impllied}) δ×vega×2σ1=(σ2σimplied2)×vega×2σ1=2σσ+σimpllied×vega×(σσimpllied)vega(σσimpllied)
在假定波动率变化很小的条件下,最后一个约等于成立。根据这个公式,可以简化地认为,损益与波动率成线性关系。

模型假设

在这样一个简化的模型中,模型使用者需要对模型采用的假设有比较明确的认识,这样才能在实际应用中理解模型的利弊和适用范围。

标的合约可交易

尽管大部分时候人们关注的是股票和期货标的,这些标的通常是有很好的流动性的,但是对于新建立的标的或者标的流动性出现匮乏的时候,这个模型的适用性就会大大降低。

标的不支付股息或储存费用

一旦支付股息 q q q,则无风险利率 r r r就应该用 r − q r-q rq来替代,同样,如果产生仓储费用 q ∗ q^* q,则利率应该用 r + q ∗ r+q^* r+q替换。

标的可做空

对于期货来说没有问题,但是面对股票则不一定可行。即使可以做空股票,那么一般也需要支付一定的费用来借入股票。这部分费用可以通过假设一个虚拟的股息来实现。

利率单一且不变

利率是存在bid-ask spread的,同时利率本身也会有波动。但是相比其他风险,利率变化带来的rho是不显著的。

不存在税收

一旦发生支付股息的情况,则通常需要考虑税收问题。交易员需要记住应基于期权对其自身的价值来对期权定价,而不是考虑期权对投资者所产生的价值。

可以交易任何数量的合约标的,且交易不产生费用

交易量不可能超过市场容量,同时交易股数也不可能拆分至无限小。因此,当手续费、清算费或买卖价差导致小额交易或连续对冲不经济时,模型需要修正。

波动率为常数

在推导中,假设了波动率是一个常数,而不是一个关于时间或标的价格的函数,但是这并不符合实际。相反,还会有积极交易波动率这些变化的交易行为。

收益率服从正态分布/价格服从对数正态分布

根据实证研究,这种假设是不成立的,而且会产生波动率微笑,它表面隐含波动率是行权价的函数。因此,需要有额外的方法对隐含的偏度和峰度进行度量。
此外还假设了标的价格的变化是连续的,然而,大幅跳空是常见的现象。这些价格跳跃是无法对冲的,复制策略也会彻底失效。因此需要学会使用其他期权来对冲这部分风险。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值