摘要
1.问题背景:传统的深度CNN在图像超分辨率任务中取得了显著的成功,但是大部分基于深度CNN的SR模型没有充分利用来自原始低分辨率(LR)图像的层次特征,导致相对较低的性能。
2.创新点:为了解决这个问题,论文提出了一种名为Residual Dense Network(RDN)的新型网络结构,并对层次特征进行了充分利用。主要创新点包括:
使用Residual Dense Block(RDB)来提取丰富的局部特征,通过密集连接的卷积层实现局部特征的提取。
RDB允许从前一个RDB的状态直接连接到当前RDB的所有层,从而形成了连续内存(CM)机制,增 强了局部 特征之间的信息流动。
使用局部特征融合来自适应地学习前面和当前局部特征之间的有效信息,稳定更宽网络的训练过程。
在充分提取局部特征之后,使用全局特征融合机制以整体的方式联合自适应地学习全局层次特征。
3.方法优势:通过以上创新点,论文的RDN在图像超分辨率任务中表现出色,与当前最先进的方法相比具有显著优势。
总体而言,摘要内容介绍了论文提出的RDN网络结构及其特点,突出了其在图像超分辨率任务中的优越性能。
1. Introduction
这部分介绍了单图超分辨率(Single Image Super-Resolution,SISR)的研究背景以及目前已有的方法的局限性。主要内容包括:
SISR问题的背景:SISR旨在从低分辨率(LR)图像生成具有高分辨率(HR)的视觉效果良好的图像。SISR在计算机视觉任务中被广泛应用,如安全和监控成像、医学成像和图像生成等。然而,由于SISR是一个不逆问题,对于任何LR输入都存在多种解决方案。为了解决这个问题,已经提出了许多图像SR算法,包括插值法、重建法和基于学习的方法。
已有方法的局限性:目前的深度学习(DL)方法在SISR任务中取得了显著进展,但大多数方法未充分利用每个卷积层的信息。虽然已经有一些方法使用了记忆块或密集块等模块,但它们仍然未能充分利用来自所有卷积层的信息,并且忽略了图像中不同尺度、角度和长宽比的物体。此外,一些方法需要对原始LR图像进行插值预处理,增加了计算复杂性并丢失了一些细节信息。
论文的创新:为了解决以上问题,论文提出了一种名为Residual Dense Network(RDN)的统一框架。
主要创新包括:
使用Residual Dense Block(RDB)作为RDN的构建模块,充分利用原始LR图像中的所有层次特征。
RDB支持连续内存机制,使得当前RDB的输出可以直接连接到下一个RDB的所有层次,从而实现信息的连续传递。
通过局部特征融合(