机器学习基础 2:矩阵乘法以及求导

向量、矩阵、张量向量:一维数组矩阵:二维数组张量:N 维数组 什么是张量(tensor)?特殊矩阵对角矩阵 [a11000a22000a33]\begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\0 & 0 & a_{33} \\\...
摘要由CSDN通过智能技术生成

向量、矩阵、张量

向量:一维数组
矩阵:二维数组
张量:N 维数组 什么是张量(tensor)?
张量

特殊矩阵

对角矩阵 [ a 11 0 0 0 a 22 0 0 0 a 33 ] \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \\ \end{bmatrix} a11000a22000a33
单位矩阵 [ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} 100010001

行列式(determinant)

  根据 某考研视频,行列式定义如下:

∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \end{vmatrix} = a_{11}a_{22} -a_{12}a_{21} a11a21a12a22=a11a22a12a21
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 − a 13 a 22 a 31 + a 12 a 21 a 33 + a 23 a 32 a 11 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{vmatrix} = a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{21}a_{32}a_{13}-a_{13}a_{22}a_{31}+a_{12}a_{21}a_{33}+a_{23}a_{32}a_{11} a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a21a32a13a13a22a31+a12a21a33+a23a32a11
二阶行列式由2个二维向量( ( a 11 , a 12 ) (a_{11}, a_{12}) (a11,a12) ( a 21 , a 22 ) (a_{21}, a_{22}) (a21,a22))组成,其结果为两个向量为邻边的平行四边形的面积

三阶行列式由3个三维向量组成,其结果为三个向量为邻边的平行六面体的体积

  对上述情形进行扩展:

∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{vmatrix} a11a21an1a12a22an2a1na2nann n n n 阶行列式由 n n n n n n 维向量组成,其结果是以这 n n n 个向量的 n n n 维图形的 n n n 维体积
为方便起见,定义 D n × n = ∣ A n × n ∣ D_{n\times n} = \begin{vmatrix} A_{n\times n}\end{vmatrix} Dn×n=An×n

  行列式有以下性质

  • 某行元素全为零 ⇒ \Rightarrow D = 0 D=0 D=0
  • 两行元素对应成比例 ⇒ \Rightarrow D = 0 D=0 D=0
  • 交换两行元素 ⇒ \Rightarrow D D D 变号  (互换)
  • 某行元素乘以 k k k ⇒ \Rightarrow D D D 乘以 k k k(倍乘)
  • 某行元素乘以 k k k 后加到另一行 ⇒ \Rightarrow D D D 不变 (倍加)
  • 单行可拆 ⇒ \Rightarrow 只有一行元素不同的行列式可以相加  (可加性)
  • 以上行的性质均适用于列

  行列式有以下重要结论

  • D ≠ 0 D \neq 0 D̸=0 时,向量之间相互独立 (线性无关)
  • D = 0 D = 0 D=0 时,向量中至少一个多余 (线性相关)

###矩阵(matrix)
  根据 某考研视频,矩阵的本质为:

表面上,是一个表达系统信息的数表
本质上,用秩来研究矩阵

  秩的定义

给出 A m × n A_{m\times n} Am×n 若有
{ ∃   k   阶 子 式 不 为 0   ⇒   ∃   k   个 独 立 向 量 ∀   k + 1   阶 子 式 全 为 0   ⇒   ∀   k + 1   个 向 量 中 至 少 有 一 个 多 余 \left\{ \begin{aligned} \exists\ k\ 阶子式不为 0 &\ \Rightarrow\ \exists\ k\ 个独立向量\\ \forall\ k+1\ 阶子式全为 0 &\ \Rightarrow\ \forall\ k+1\ 个向量中至少有一个多余 \\ \end{aligned} \right. {  k 0 k+1 0   k    k+1  有且仅有 k k k 个独立向量独立,故秩是组成 A A A 的独立向量的个数, A A A 的秩 表示为 r ( A ) = k r(A)=k r(A)=k

  考察一种特殊形式的矩阵——阶梯矩阵

A = [ a 11 a 12 a 13 0 a 22 a 13 0 0 a 33 ] B = [ 1 0 a 13 0 1 0 0 0 1 ] A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{13} \\ 0 & 0 & a_{33} \end{bmatrix} \\ B = \begin{bmatrix} 1 & 0 & a_{13} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} A=a1100a12a220a13a13a33B=1

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值