机器学习基础 4:无约束最优化方法

本文介绍了无约束最优化方法的基础知识,包括收敛速度、凸集和正定矩阵的概念。接着,深入探讨了最优化问题,从多元函数分析到无约束和约束优化问题,特别讲解了KKT条件在解决此类问题中的重要性。文章还提到了外罚函数法和拉格朗日数乘法等优化策略。
摘要由CSDN通过智能技术生成

基础知识

在开始介绍优化方法之前,我们先介绍一些基础知识

收敛速度

  如果一种方法(这里指算法),是以前一次迭代的一阶幂乘以一个小于1的因子的速度收敛,则称这种方法为线性收敛(例如二分法),而以高阶幂收敛的方法称为超线性收敛。
  具体描述:
设算法产生点列 { x ( x ) } \{x^{(x)}\} { x(x)},收敛到解 x ∗ x^* x,且 { x ( x ) } ≠ x ∗ , ∀ k \{x^{(x)}\} \neq x^* ,\forall k { x(x)}̸=xk,则

  1. 线性收敛:当 k k k充分大时有
    ∥ x ( x + 1 ) − x ∗ ∥ ∥ x ( x ) − x ∗ ∥ &lt; 1 \frac{\|x^{(x+1)}-x^*\|}{\|x^{(x)}-x^*\|} &lt; 1 x(x)xx(x+1)x<1
  2. 超线性收敛: lim ⁡ k → ∞ ∥ x ( x + 1 ) − x ∗ ∥ ∥ x ( x ) − x ∗ ∥ = 0 \lim_{k\rightarrow\infty} \frac{\|x^{(x+1)}-x^*\|}{\|x^{(x)}-x^*\|} = 0 klimx(x)xx(x+1)x=0
  3. 二阶收敛: ∃ α &gt; 0 \exists \alpha&gt;0 α>0,当 k k k充分大时有: ∥ x ( x + 1 ) − x ∗ ∥ ∥ x ( x ) − x ∗ ∥ ≤ α \frac{\|x^{(x+1)}-x^*\|}{\|x^{(x)}-x^*\|} \leq\alpha x(x)xx(x+1)xα

  我们知道上面的符号 ∥ ⋯ ∥ \|\cdots\| 是范数的符号,范数可以用来度量向量之间的距离。对最简单的情况——一维向量来说——上面的各个相减的式子就可以表示两点之间的距离。

凸集 (convex set)

凸集在最优化领域占有重要地位。其数学定义是:

设有 N N N维空间的子集 D D D,如果对于任意的向量(也可以说是 N N N维空间中的点) X 1 、 X 2 ∈ D X_1、X_2 \in D X1X2D,以及任意的实数 a ∈ [ 0 , 1 ] a \in [0, 1] a[0,1],都有 a X 1 + ( 1 − a ) X 2 ∈ D aX_1+(1-a)X_2 \in D aX1+(1a)X2D,那么则称 D D D为凸集。

凸集的几何意义是:

如果 D D D为非空集合,则连接 D D D中任意两个点 X 1 、 X 2 X_1、X_2 X1X2的线段仍属于该集合。

这似乎有点令人费解: a X 1 + ( 1 − a ) X 2 ∈ D aX_1+(1-a)X_2 \in D aX1+(1a)X2D与两点之间的连线有什么关系呢?它表示连接这两点的线段上的任意一点。简单推导如下:

假设X为线段 X 1 X 2 X_1X_2 X1X2上的任一点,则向量 X 2 X ⃗ \vec{X_2X} X2X 平行于向量 X 2 X 1 ⃗ \vec{X_2X_1} X2X1 ,且 0 ≤ ∣ X 2 X ⃗ ∣ ≤ ∣ X 2 X 1 ⃗ ∣ 0 \leq |\vec{X_2X}|\leq|\vec{X_2X_1}| 0X2X X2X1
因此,存在数 a ∈ [ 0 , 1 ] a \in [0, 1] a[0,1],使得 X 2 X ⃗ = a X 2 X 1 ⃗ \vec{X_2X}= a\vec{X_2X_1} X2X =aX2X1 ,即: X − X 2 = a ( X 1 − X 2 ) X-X_2= a(X_1-X_2) XX2=a(X1X2),即 X = a X 1 + ( 1 − a ) X 2 X = aX_1+(1-a)X_2 X=aX1+(1a)X2。由于X是线段 X 1 X 2 X_1X_2 X1X2上任一点,因此前面的结论不言自明。

正定矩阵 (positive definite matrix)

  设 M \bf{M} M n \bf{n} n阶方阵,如果对任何非零列向量 x ∈ R n \bf{x}\in R^n xRn,都有 x T M x &gt; 0 \bf{x^TMx}&gt;0 xTMx>0,就称 M \bf{M} M正定矩阵
  当 x T M x &gt; 0 \bf{x^TMx}&gt;0 xTMx>0 弱化为 x T M x ≥ 0 \bf{x^TMx} \geq 0 x

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值