Datawhale X 李宏毅苹果书 AI夏令营-CNN图像分类-Task2

# Datawhale AI 夏令营

夏令营手册:向李宏毅学深度学习

图像分类任务的基本套路

  • 准备数据
  • 训练模型
  • 应用模型

深度神经网络训练模型的套路

这些步骤不单单适用于图像分类,对于广泛的深度学习任务也同样适用

  1. 导入所需要的库/工具包
  2. 数据准备与预处理
  3. 定义模型
  4. 定义损失函数和优化器等其他配置
  5. 训练模型
  6. 评估模型
  7. 进行预测

1. 导入所需要的库/工具包

这段代码导入了进行图像处理和深度学习任务所需的各种Python库和模块,涵盖了数据处理、神经网络构建、数据集操作、图像转换和显示进度条等功能,为后续的模型训练和评估做好准备。

# 导入必要的库
import numpy as np
import pandas as pd
import torch
import os
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
# “ConcatDataset” 和 “Subset” 在进行半监督学习时可能是有用的。
from torch.utils.data import ConcatDataset, DataLoader, Subset, Dataset
from torchvision.datasets import DatasetFolder, VisionDataset
# 这个是用来显示进度条的。
from tqdm.auto import tqdm
import random

此外,为了确保实验的可重复性,设置随机种子,并对CUDA进行配置以确保确定性:

# 设置随机种子以确保实验结果的可重复性
myseed = 6666

# 确保在使用CUDA时,卷积运算具有确定性,以增强实验结果的可重复性
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

# 为numpy和pytorch设置随机种子
np.random.seed(myseed)
torch.manual_seed(myseed)

# 如果使用CUDA,为所有GPU设置随机种子
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(myseed)

2. 数据准备与预处理

数据准备包括从指定路径加载图像数据,并对其进行预处理。作业中对图像的预处理操作包括调整大小和将图像转换为Tensor格式。为了增强模型的鲁棒性,可以对训练集进行数据增强。相关代码如下:

# 在测试和验证阶段,通常不需要图像增强。
# 我们所需要的只是调整PIL图像的大小并将其转换为Tensor。
test_tfm = transforms.Compose([
    transforms.Resize((128, 128)),
    transforms.ToTensor(),
])

# 不过,在测试阶段使用图像增强也是有可能的。
# 你可以使用train_tfm生成多种图像,然后使用集成方法进行测试。
train_tfm = transforms.Compose([
    # 将图像调整为固定大小(高度和宽度均为128)
    transforms.Resize((128, 128)),
    # TODO:你可以在这里添加一些图像增强的操作。

    # ToTensor()应该是所有变换中的最后一个。
    transforms.ToTensor(),
])
class FoodDataset(Dataset):
    """
    用于加载食品图像数据集的类。

    该类继承自Dataset,提供了对食品图像数据集的加载和预处理功能。
    它可以自动从指定路径加载所有的jpg图像,并对这些图像应用给定的变换。
    """

    def __init__(self, path, tfm=test_tfm, files=None):
        """
        初始化FoodDataset实例。

        参数:
        - path: 图像数据所在的目录路径。
        - tfm: 应用于图像的变换方法(默认为测试变换)。
        - files: 可选参数,用于直接指定图像文件的路径列表(默认为None)。
        """
        super(FoodDataset).__init__()
        self.path = path
        # 列出目录下所有jpg文件,并按顺序排序
        self.files = sorted([os.path.join(path, x) for x in os.listdir(path) if x.endswith(".jpg")])
        if files is not None:
            self.files = files  # 如果提供了文件列表,则使用该列表
        self.transform = tfm  # 图像变换方法

    def __len__(self):
        """
        返回数据集中图像的数量。

        返回:
        - 数据集中的图像数量。
        """
        return len(self.files)

    def __getitem__(self, idx):
        """
        获取给定索引的图像及其标签。

        参数:
        - idx: 图像在数据集中的索引。

        返回:
        - im: 应用了变换后的图像。
        - label: 图像对应的标签(如果可用)。
        """
        fname = self.files[idx]
        im = Image.open(fname)
        im = self.transform(im)  # 应用图像变换

        # 尝试从文件名中提取标签
        try:
            label = int(fname.split("/")[-1].split("_")[0])
        except:
            label = -1  # 如果无法提取标签,则设置为-1(测试数据无标签)

        return im, label
# 构建训练和验证数据集
# "loader" 参数定义了torchvision如何读取数据
train_set = FoodDataset("./hw3_data/train", tfm=train_tfm)
# 创建训练数据加载器,设置批量大小、是否打乱数据顺序、是否使用多线程加载以及是否固定内存地址
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)
# 构建验证数据集
# "loader" 参数定义了torchvision如何读取数据
valid_set = FoodDataset("./hw3_data/valid", tfm=test_tfm)
# 创建验证数据加载器,设置批量大小、是否打乱数据顺序、是否使用多线程加载以及是否固定内存地址
valid_loader = DataLoader(valid_set, batch_size=batch_size, shuffle=True, num_workers=0, pin_memory=True)

3. 定义模型

这段代码定义了一个图像分类器类(Classifier),继承自PyTorch的nn.Module。该分类器通过一系列卷积层、批归一化层、激活函数和池化层构建卷积神经网络(CNN),用于提取图像特征。随后,这些特征被输入到全连接层进行分类,最终输出11个类别的概率,用于图像分类任务。

# 根据GPU是否可用选择设备类型
device = "cuda" if torch.cuda.is_available() else "cpu"

# 初始化模型,并将其放置在指定的设备上
model = Classifier().to(device)

# 定义批量大小
batch_size = 64

# 定义训练轮数
n_epochs = 8

# 如果在'patience'轮中没有改进,则提前停止
patience = 5

# 对于分类任务,我们使用交叉熵作为性能衡量标准
criterion = nn.CrossEntropyLoss()

# 初始化优化器,您可以自行调整一些超参数,如学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.0003, weight_decay=1e-5)

4. 定义损失函数和优化器等其他配置

这段代码实现了图像分类模型的初始化和训练配置,目的是准备好训练环境和参数。它选择合适的设备(GPU或CPU),设置模型、批量大小、训练轮数、提前停止策略,定义了损失函数和优化器,为后续的模型训练奠定了基础。

# 根据GPU是否可用选择设备类型
device = "cuda" if torch.cuda.is_available() else "cpu"

# 初始化模型,并将其放置在指定的设备上
model = Classifier().to(device)

# 定义批量大小
batch_size = 64

# 定义训练轮数
n_epochs = 8

# 如果在'patience'轮中没有改进,则提前停止
patience = 5

# 对于分类任务,我们使用交叉熵作为性能衡量标准
criterion = nn.CrossEntropyLoss()

# 初始化优化器,您可以自行调整一些超参数,如学习率
optimizer = torch.optim.Adam(model.parameters(), lr=0.0003, weight_decay=1e-5)

5. 训练模型

这段代码实现了一个图像分类模型的训练和验证循环,目的是通过多轮训练(epochs)逐步优化模型的参数,以提高其在验证集上的性能,并保存效果最好的模型。训练阶段通过前向传播、计算损失、反向传播和参数更新来优化模型,验证阶段评估模型在未见过的数据上的表现。如果验证集的准确率超过了之前的最好成绩,保存当前模型,并在连续多轮验证性能未提升时提前停止训练。

# 初始化追踪器,这些不是参数,不应该被更改
stale = 0
best_acc = 0

for epoch in range(n_epochs):
    # ---------- 训练阶段 ----------
    # 确保模型处于训练模式
    model.train()

    # 这些用于记录训练过程中的信息
    train_loss = []
    train_accs = []

    for batch in tqdm(train_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()
        # print(imgs.shape,labels.shape)

        # 前向传播数据。(确保数据和模型位于同一设备上)
        logits = model(imgs.to(device))

        # 计算交叉熵损失。
        # 在计算交叉熵之前不需要应用softmax,因为它会自动完成。
        loss = criterion(logits, labels.to(device))

        # 清除上一步中参数中存储的梯度
        optimizer.zero_grad()

        # 计算参数的梯度
        loss.backward()

        # 为了稳定训练,限制梯度范数
        grad_norm = nn.utils.clip_grad_norm_(model.parameters(), max_norm=10)

        # 使用计算出的梯度更新参数
        optimizer.step()

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        train_loss.append(loss.item())
        train_accs.append(acc)

    train_loss = sum(train_loss) / len(train_loss)
    train_acc = sum(train_accs) / len(train_accs)

    # 打印信息
    print(f"[ 训练 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {train_loss:.5f}, acc = {train_acc:.5f}")

6. 评估模型

训练完成后,需要在测试集上评估模型的性能。通过计算准确率来衡量模型在测试集上的表现。

# ---------- 验证阶段 ----------
    # 确保模型处于评估模式,以便某些模块如dropout被禁用,模型能够正常工作
    model.eval()

    # 这些用于记录验证过程中的信息
    valid_loss = []
    valid_accs = []

    # 按批次迭代验证集
    for batch in tqdm(valid_loader):
        # 每个批次包含图像数据及其对应的标签
        imgs, labels = batch
        # imgs = imgs.half()

        # 我们在验证阶段不需要梯度。
        # 使用 torch.no_grad() 加速前向传播过程。
        with torch.no_grad():
            logits = model(imgs.to(device))

        # 我们仍然可以计算损失(但不计算梯度)。
        loss = criterion(logits, labels.to(device))

        # 计算当前批次的准确率
        acc = (logits.argmax(dim=-1) == labels.to(device)).float().mean()

        # 记录损失和准确率
        valid_loss.append(loss.item())
        valid_accs.append(acc)
        # break

    # 整个验证集的平均损失和准确率是所记录值的平均
    valid_loss = sum(valid_loss) / len(valid_loss)
    valid_acc = sum(valid_accs) / len(valid_accs)

    # 打印信息
    print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")

    # 更新日志
    if valid_acc > best_acc:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f} -> 最佳")
    else:
        with open(f"./{_exp_name}_log.txt", "a"):
            print(f"[ 验证 | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")
# 李老师的课程原文件里面确实缺少write,如果想要log文件里面有内容,可以按照下面的参考,此部分不是重点
#if valid_acc > best_acc:
#    with open(f"./{_exp_name}_log.txt", "a") as log_file:
#        log_file.write(f"[ Valid | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f} -> best\n")
#    print(f"[ Valid | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f} -> best")
#else:
#    with open(f"./{_exp_name}_log.txt", "a") as log_file:
#        log_file.write(f"[ Valid | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}\n")
#    print(f"[ Valid | {epoch + 1:03d}/{n_epochs:03d} ] loss = {valid_loss:.5f}, acc = {valid_acc:.5f}")




    # 保存模型
    if valid_acc > best_acc:
        print(f"在第 {epoch} 轮找到最佳模型,正在保存模型")
        torch.save(model.state_dict(), f"{_exp_name}_best.ckpt")  # 只保存最佳模型以防止输出内存超出错误
        best_acc = valid_acc
        stale = 0
    else:
        stale += 1
        if stale > patience:
            print(f"连续 {patience} 轮没有改进,提前停止")
            break

7. 进行预测

最后的代码构建一个测试数据集和数据加载器,以便高效地读取数据。实例化并加载预训练的分类器模型,并将其设置为评估模式。在不计算梯度的情况下,遍历测试数据,使用模型进行预测,并将预测标签存储在列表中。将预测结果与测试集的ID生成一个DataFrame,并将其保存为submission.csv文件。

# 构建测试数据集
# "loader"参数指定了torchvision如何读取数据
test_set = FoodDataset("./hw3_data/test", tfm=test_tfm)
# 创建测试数据加载器,批量大小为batch_size,不打乱数据顺序,不使用多线程,启用pin_memory以提高数据加载效率
test_loader = DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=0, pin_memory=True)

# 实例化分类器模型,并将其转移到指定的设备上
model_best = Classifier().to(device)

# 加载模型的最优状态字典
model_best.load_state_dict(torch.load(f"{_exp_name}_best.ckpt"))

# 将模型设置为评估模式
model_best.eval()

# 初始化一个空列表,用于存储所有预测标签
prediction = []

# 使用torch.no_grad()上下文管理器,禁用梯度计算
with torch.no_grad():
    # 遍历测试数据加载器
    for data, _ in tqdm(test_loader):
        # 将数据转移到指定设备上,并获得模型的预测结果
        test_pred = model_best(data.to(device))
        # 选择具有最高分数的类别作为预测标签
        test_label = np.argmax(test_pred.cpu().data.numpy(), axis=1)
        # 将预测标签添加到结果列表中
        prediction += test_label.squeeze().tolist()

# 创建测试csv文件
def pad4(i):
    """
    将输入数字i转换为长度为4的字符串,如果长度不足4,则在前面补0。
    :param i: 需要转换的数字
    :return: 补0后的字符串
    """
    return "0" * (4 - len(str(i))) + str(i)

# 创建一个空的DataFrame对象
df = pd.DataFrame()
# 使用列表推导式生成Id列,列表长度等于测试集的长度
df["Id"] = [pad4(i) for i in range(len(test_set))]
# 将预测结果赋值给Category列
df["Category"] = prediction
# 将DataFrame对象保存为submission.csv文件,不保存索引
df.to_csv("submission.csv", index=False)        
  • 18
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值