如何对非均衡数据进行精准预测建模?

本文探讨非均衡数据预测问题,介绍了JMP在处理非均衡数据上的应用。通过分析非均衡数据的特征,讨论了如何建立分类模型,以及多种抽样方法,如加权法、欠采样、过采样和SMOTE等。文章还以银行信用卡逾期数据为例,展示了使用不平衡分类插件进行模型评估和预测的过程,强调了PR曲线和Tomek Links方法在优化模型性能中的作用。
摘要由CSDN通过智能技术生成

在分析数据时,我们常常需要做一些预测,例如根据用户的商品购买数据,预测该用户是否对某个产品感兴趣;根据信用卡申请人的消费行为数据,预测该用户的还款行为是否可能进行逾期等等。

但有时候我们会发现,原始的数据集中要预测的Y变量,两类的数量差距非常大,比如,对某产品感兴趣的用户数远小于不感兴趣的用户数,有逾期记录的用户数远小于没有逾期记录的用户数。类似这样的数据,被称为非均衡数据,如果直接用传统的预测方法可能造成预测效果的不理想,那么对于这样的非均衡数据的预测问题,有什么样的好办法呢?

莫慌!JMP可以完美解决此类问题。

今天我们就来探讨下非均衡数据的精准预测。

01 非均衡数据问题有哪些特征?

通常来说,非均衡数据往往具备以下一些特征。

响应变量Y仅有2个水平。其中一个水平的数量>>另一个水平的数量;数量多的水平成为多数水平,数量少的水平称为少数水平。
少数水平通常是们感兴趣的水平。例如欺诈、疾病、信用风险的检测。
我们希望基于自变量来预测所属类别。

我们需要建立预测模型,计算每一个样本属于少数水平的概率p.

我们选择一个阈值来优化各种标准,如误分类率、真阳性率、假阳性率、准确率、召回率等。

我们将其预测的概率p(或得分)超过阈值的观察结果分类为少数类。

02 如何建立分类模型?

通常情况下,一些传统的分类精度指标往往不适用于不平衡数据。

例如,考虑少数水平数占2%的情况。你可以简单地将所有的观测划分为多数水平所在的类别,便可以达到98%的准确率。

精度-召回率(PR)曲线常用于不平衡数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值