干货 | 基于JMP的方差分析及两两比较的思路与实现

本文介绍了如何在JMP中进行方差分析和两两比较,强调了正态性和方差齐性的重要性。通过实例展示了在数据不满足方差齐性时使用Welch方差分析,以及利用Tukey法进行组间差异的显著性检验,帮助用户掌握统计分析技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在之前的文章中,我们介绍了组间比较的基本操作,并在上期文章中详细介绍了t检验在JMP中的实现。t检验是用于检验两组均值差异的统计方法,而本文要讲的则是用于检验多组均值差异的统计方法——方差分析。

为了帮助更多的临床医师学习如何运用JMP高效地开展数据分析,提高日常工作和发表论文的效率,2020年8月起,JMP资深用户、JMP特约专栏作者、资深统计学家冯国双博士及其团队将在JMP数据分析平台为大家分享一系列统计及数据分析、JMP实战操作、JMP分析报表解读等干货内容,每期一个经典话题,帮助大家掌握一个新技能。值得注意的是,这些话题并非仅针对临床医师,对所有运用JMP软件开展数据分析的小伙伴都适用。本文为此系列文章的第13期。

在本文中,我们以图1的数据为例进行讲解。
在这里插入图片描述

图1 示例数据

方差分析的基本思想是把全部观察值的总变异分解成组间变异和误差变异,然后将组间变异与随机误差进行比较,从而判断总体均数间的差别是否具有统计学意义。

方差分析是t检验的更一般性的推广,t检验可以看做是方差分析的特例。

因此使用方差分析的前提条件与t检验一致:
①各个样本是相互独立的;
②各组数据服从正态分布;
③各组间的方差相等,即方差齐。

这提示我们在进行方差分析前,需要进行正态性检验和方差齐性检验,这两种检验方法我们已在《如何在JMP中实现正态性检验和方差齐性检验?》文章中进行了详细介绍。

方差分析只能得出组间有差异的结论,然而具体哪几组之间有差异,仍需要进一步统计

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值