【常见的损失函数总结】

损失函数的定义

损失函数,又叫目标函数,是编译一个神经网络模型必须的两个要素之一。另一个必不可少的要素是优化器。

损失函数用来评价模型的预测值和真实值不一样的程度,损失函数越好,通常模型的性能越好。不同的模型用的损失函数一般也不一样。

损失函数分为经验风险损失函数结构风险损失函数。经验风险损失函数指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项

损失Loss必须是标量,因为向量无法比较大小(向量本身需要通过范数等标量来比较)。

损失函数一般分为4种:

  1. HingeLoss 0-1 损失函数:感知机就是用的这种损失函数;
  2. 对数损失函数:逻辑回归的损失函数就是log对数损失函数;
  3. MSE平方损失函数:线性回归的损失函数就是MSE;
  4. Hinge 损失函数:SVM就是使用这个损失函数;
  5. 交叉熵损失函数 :逻辑回归的损失函数,用sigmoid作为激活函数,常用于二分类和多分类问题中。

在这里插入图片描述

我们先定义两个二维数组,然后用不同的损失函数计算其损失值。

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
y_pred = Variable(torch.ones(2,2))
a = torch.Tensor(2,2)
a[0,0]=0
a[0,1]=1
a[1,0]=2
a[1,1]=3
y = Variable (a)

y_pred 的值为:[[1,1],[1,1]]。
y 的值为:[[0,1],[2,3]]。

神经网络的学习为何要设定损失函数?

神经网络中的“学习”是指从训练数据中自动获取最优权重参数的过程。学习的目的就是以该损失函数为基准,找出能使它的值达到最小的权重参数。

常见的损失函数

1. 0-1损失函数(zero-one loss)

0-1损失是指预测值和目标值不相等为1, 否则为0:
在这里插入图片描述
特点:

(1)0-1损失函数直接对应分类判断错误的个数,但是它是一个非凸函数,不太适用。

(2)感知机就是用的这种损失函数。但是相等这个条件太过严格,因此可以放宽条件,即满足
[公式]
时认为相等。

2. 对数损失函数

log对数损失函数的标准形式如下:
在这里插入图片描述
特点:

(1) log对数损失函数能非常好的表征概率分布,在很多场景尤其是多分类,如果需要知道结果属于每个类别的置信度,那它非常适合。
(2)健壮性不强,相比于hinge loss对噪声更敏感。
(3)逻辑回归的损失函数就是log对数损失函数。

3. 平方损失函数MSE(均值平方差)

数理统计中演化而来,均方误差是指参数估计值和参数真实值之差平方的期望值。在此处其主要是对每个预测值与真实值作差求平方的平均值,具体公式如下所示:
在这里插入图片描述
MSE越小代表模型越好,类似的算法还包括RMSE和MAD。
线性回归就是使用MSE作为损失函数。

方式1:Pytorch

criterion = nn.MSELoss()
loss = criterion(y_pred, y)
print(loss)

最后结果是:1.5。

方式2:tensorflow
tensorflow没有单独的MSE函数,不过可由开发者自己组合即可,如下所示:

# y为真实值,y_pred为预测值
1. MSE = tf.reduce_mean(tf.square(y - y_pred)))
2. RMSE = tf.sqrt(tf.reduce_mean(tf.square(y - y_pred)))
3. MAD =  tf.reduce_mean(tf.complex_abs(y - y_pred))
 

4. Hinge 损失函数

Hinge损失函数标准形式如下:
在这里插入图片描述
y为目标值,f(x)为预测值。

特点:

(1)hinge损失函数表示如果被分类正确,损失为0,否则损失就为 1 − y f ( x ) 1-yf(x) 1yf(x)SVM就是使用这个损失函数。
(2)一般的 f ( x ) f(x) f(x) 是预测值,在-1到1之间, y y y 是目标值(-1或1)。其含义是, f ( x ) f(x) f(x) 的值在-1和+1之间就可以了,并不鼓励 ∣ f ( x ) ∣ > 1 |f(x)| > 1 f(x)>1 ,即并不鼓励分类器过度自信,让某个正确分类的样本距离分割线超过1并不会有任何奖励,从而使分类器可以更专注于整体的误差
(3) 健壮性相对较高,对异常点、噪声不敏感,但它没太好的概率解释。

5. 交叉熵损失函数 (Cross-entropy loss function)

交叉熵(cross-entropy)刻画了两个概率分布之间的距离,更适合用在分类问题上,因为交叉熵表达预测输入样本属于某一类的概率。
交叉熵损失函数的标准形式如下:
在这里插入图片描述
注意公式中 x x x 表示样本, y y y 表示实际的标签, a a a 表示预测的输出, n n n 表示样本总数量。

也就相当于:
在这里插入图片描述
特点:

  1. 本质上也是一种对数似然函数,可用于二分类多分类任务中。
  • 二分类问题中的loss函数(输入数据是softmax或者sigmoid函数的输出):
    在这里插入图片描述
  • 多分类问题中的loss函数(输入数据是softmax或者sigmoid函数的输出):
    在这里插入图片描述
  1. 当使用sigmoid作为激活函数的时候,常用交叉熵损失函数而不用均方误差损失函数,因为它可以完美解决平方损失函数权重更新过慢的问题,具有“误差大的时候,权重更新快;误差小的时候,权重更新慢”的良好性质。

Pytorch实现交叉熵函数:

def cross_entropy(Y, P):
    """Cross-Entropy loss function.
    以向量化的方式实现交叉熵函数
    Y and P are lists of labels and estimations
    returns the float corresponding to their cross-entropy.
    """
    Y = np.float_(Y)
    P = np.float_(P)
    return -np.sum(Y * np.log(P) + (1 - Y) * np.log(1 - P)) / len(Y)

tensorflow具有多种常见的交叉熵函数:

#Sigmoid交叉熵
tf.nn.simoid_cross_entropy_with_logits(y_pred, y, name=None)
#softmax交叉熵
tf.nn.softmax_cross_entropy_with_logits(y_pred, y, name=None)
#Sparse交叉熵
tf.nn.sparse_cross_entropy_with_logits(y_pred, y, name=None)
#加权Sigmoid交叉熵
tf.nn.weighter_cross_entropy_with_logits(y_pred, y, pos_weight,name=None)

三、总结
loss函数的选取取决于输入标签数据的类型:若输入的是实数、无界的值,损失函数使用平方差;若输入标签是位矢量(分类标志),使用交叉熵更适合。此外预测值与真实值要采用同样的数据分布,以便于loss函数取得更佳的效果。

参考链接:
深度学习基础(三)loss函数:https://blog.csdn.net/u010554381/article/details/88351920
常见的损失函数(loss function)总结:https://zhuanlan.zhihu.com/p/58883095

  • 36
    点赞
  • 382
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值