人工智能与机器学习
文章平均质量分 99
白码王子小张
小张的零碎笔记
展开
-
Ubuntu18.04下基于YoloV4 的Keras物体识别
这里写目录标题一、安装keras、tensorflow二、下载Yolo V4-keras三、yolov4.weights权重文件h5模型转换四、实现YoloV4 的Keras物体识别一、安装keras、tensorflow注意:安装的keras和tensorflow版本要相匹配1.安装keras二、下载Yolo V4-keras1.下载Yolo V4-kerasgit clone https://github.com/Ma-Dan/keras-yolo4文件内容如下:2.yolov4.原创 2020-07-06 11:01:15 · 738 阅读 · 0 评论 -
Python实现笑脸检测+人脸口罩检测
目录一、人脸图像特征提取方法二、对笑脸数据集genki4k进行训练和测试(包括SVM、CNN),输出模型训练精度和测试精度(F1-score和ROC),实现检测图片笑脸和实时视频笑脸检测(一)环境、数据集准备(二)训练笑脸数据集genki4k(三)图片笑脸检测(四)实时视频笑脸检测三、将笑脸数据集换成人脸口罩数据集,并对口罩数据集进行训练,编写程序实现人脸口罩检测(一)训练人脸口罩数据集(二)编程实现人脸口罩检测一、人脸图像特征提取方法https://blog.csdn.net/weixin_45137原创 2020-07-05 21:21:31 · 13210 阅读 · 35 评论 -
人脸图像特征提取方法(HOG、Dlib、CNN)简述
目录人脸图像特征提取方法(一)HOG特征提取(二)Dlib库(三)卷积神经网络特征提取(CNN)人脸图像特征提取方法(一)HOG特征提取1、HOG简介Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉、模式识别领域很常用的一种描述图像局部纹理的特征。它的主要思想是在一副图像中,局部目标的表象和形状能够被梯度或边缘的方向密度分布很好地描述。其本质为:梯度的统计信息,而梯度主要存在于边缘的地方。2、实现方法首先将图像分成小的连通区域,这些连通区域被叫做细胞原创 2020-07-03 17:54:40 · 19773 阅读 · 1 评论 -
基于Python+OpenCV的人脸口罩识别检测
以下编程在Jupyter notbook平台上进行目录一、OpenCV下载安装二、人脸口罩数据集下载处理(一)人脸口罩数据集下载(二)人脸口罩数据集的处理三、训练人脸口罩数据集模型四、进行人脸口罩检测一、OpenCV下载安装参考网址:https://blog.csdn.net/cungudafa/article/details/84451066二、人脸口罩数据集下载处理(一)人脸口罩数据集下载下载人脸口罩数据集的目的是利用OpenCV进行模型训练,这里采用口罩数据集的正负比列为1:3,即500原创 2020-07-03 16:49:59 · 15861 阅读 · 32 评论 -
基于windows10+Anaconda3+Python搭建配置TensorFlow、Keras、Jupyter Notebook库,下载Kaggle狗猫数据集完成原始数据直接训练和数据增强后训练
目录一、引言(一)Overfit(过拟合)含义(二)数据增强1、什么是数据增强2、常见的数据增强方法二、相关数据下载及TensorFlow、Keras、Jupyter Notebook库的搭建(一)搭建配置TensorFlow、Keras、Jupyter Notebook(二)Kaggle狗猫数据集下载三、猫狗数据集原始数据直接训练和数据增强后训练四、优化提高猫狗图像分类模型精度(一)构建卷积网络(二)构建VGG16网络(三)将猫狗数据集传递给神经网络(四)参数调优一、引言(一)Overfit(过拟合)原创 2020-06-10 22:44:14 · 1769 阅读 · 0 评论 -
基于Python的SVM算法深入研究
目录一、线性数据处理(一)非标准化原始数据显示(二)绘制决策边界(三)实例化一个SVC并传入超参数C二、非线性数据处理(一)生成月亮数据集(二)在月亮数据上增加噪声点(三)通过多项式特征的SVM分类(四)高维空间线性SVM处理三、核函数(一)核函数定义(二)高斯核函数(三)生成测试数据集(四)数据集升维处理一、线性数据处理(一)非标准化原始数据显示Python代码import numpy as npimport matplotlib.pyplot as pltfrom sklearn impo原创 2020-05-25 20:14:33 · 931 阅读 · 0 评论 -
分别采用线性LDA、k-means和SVM算法对鸢尾花数据集和月亮数据集进行二分类可视化分析
目录一、线性LDA、k-means和SVM算法介绍(一)线性LDA算法(二)k-means算法(三)SVM(支持向量机)算法二、采用线性LDA算法(一)鸢尾花数据集(二)月亮数据集三、采用k-means算法(一)鸢尾花数据集(二)月亮数据集四、采用SVM(支持向量机)算法(一)鸢尾花数据集(二)月亮数据集五、总结一、线性LDA、k-means和SVM算法介绍(一)线性LDA算法线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher原创 2020-05-19 15:40:54 · 1250 阅读 · 0 评论 -
基于Jupyter完成Iris数据集的 Fisher线性分类,学习数据可视化技术
Iris数据集的 Fisher线性分类和数据可视化技术一、Iris数据集的 Fisher线性分类(一)Python全部代码(二)运行结果二、数据可视化技术(一)数据浏览1、数据读取2、查看数据的整体信息3、描述性统计(二)特征工程1、数据清洗2、数据可视化3、直方图4、箱线图5、琴图6、分布图(三) 对比决策树分类算法一、Iris数据集的 Fisher线性分类(一)Python全部代码imp...原创 2020-05-07 15:03:20 · 883 阅读 · 0 评论 -
利用Python代码完成Fisher判别的推导
Fisher判别的推导一、Fisher算法(一)Fisher算法描述(二)具体步骤1、计算W值2、计算阈值3、Fisher线性判别的决策规则二、Python代码完成Fisher判别的推导(一)Python全部代码(二)运行结果一、Fisher算法(一)Fisher算法描述Fisher线性判别分析的基本思想:选择一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,同时变换后的一...原创 2020-05-07 14:25:37 · 692 阅读 · 0 评论 -
Jupyter编程完成对手写体Mnist数据集中10个字符 (0-9)的分类识别
这里写目录标题一、名词定义二、手写体Mnist数据集中10个字符 (0-9)的分类识别三、MNIST四、训练一个二分类器五、性能考核(一)使用交叉验证测量精度(二)混淆矩阵(三)精度和召回率(四)精度/召回率权衡(五)ROC曲线一、名词定义1、查准率查准率(精度)是衡量某一检索系统的信号噪声比的一种指标,即检出的相关文献量与检出的文献总量的百分比。普遍表示为:查准率=(检索出的相关信息量/检...原创 2020-04-26 20:42:15 · 2100 阅读 · 0 评论 -
“凸优化基础”相关理论知识
凸优化基础1、计算几何是研究什么的?2、计算几何理论中(或凸集中)过两点的一条直线的表达式,是如何描述的?与初中数学中那些直线方程有什么差异?有什么好处?3、凸集是什么? 直线是凸集吗?是仿射集吗?4、三维空间中的一个平面,如何表达?5、更高维度的“超平面”,如何表达?6、什么是“凸函数”定义?什么是Hessen矩阵? 如何判别一个函数是凸函数?f(x)=x^3 函数是凸函数吗?7、什么是“凸规划...原创 2020-04-22 16:59:33 · 1201 阅读 · 0 评论 -
Python编程实现对拉格朗日和KKT条件求极值
Python编程实现对拉格朗日和KKT条件求极值一、拉格朗日和KKT条件求极值概念二、手工推导计算三、Python编程实现四、总结一、拉格朗日和KKT条件求极值概念求解最优化问题中,拉格朗日乘子法和KKT条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等式约束时使用KKT条件。这个最优化问题指某一函数在作用域上的全局最小值(最小值与最大值可以相互转换)。最优化问题通常有三种情...原创 2020-04-20 17:14:05 · 4988 阅读 · 3 评论 -
Python编程利用单纯形法和scipy库对比分析求解线性规划最大值和最优解问题
Python编程利用单纯形法和scipy库对比分析求解线性规划最大值和最优解问题一、单纯形法介绍1、什么是单纯形法2、单纯形法求解思路3、单纯形法步骤4、最优解可能出现的情况二、具体题目实例三、利用单纯形法求解线性规划最优解和最大值1、编写数据文档,填入线性回归分析标准化模型2、编写Python代码四、利用Python中的scipy库对线性规划的最优解、最大值进行求解1、编写Python代码2、运...原创 2020-04-20 16:09:36 · 3867 阅读 · 3 评论 -
牛顿法、梯度下降法原理及Python编程应用
牛顿法、梯度下降法原理及Python编程应用一、项目概述无论是在学习还是工作中,我们都会遇到很多最优化问题。最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化算法在学习和工作中是很重要的,我们学习和工作中遇到的大多问题都可以建模成一种最优化模型进行求解。常见的最优化方法有梯度下降法、牛顿法和拟牛顿法、共轭梯度法等等,...原创 2020-04-05 13:01:09 · 1202 阅读 · 0 评论 -
利用Python编程,分别使用梯度下降法和最小二乘法求解多元函数
使用Python编程,分别根据梯度法和最小二乘法求解多元函数问题分别使用梯度下降法和最小二乘法求解多元函数并进行比较,这里使用jupyter notebook平台进行Python编程一、题目描述二、使用梯度下降法求解多元函数(一)梯度下降法基本原理(二)梯度下降法公式(三)Python代码实现1、导入要使用到的库、定义变量并赋值2、代价函数3、使用梯度下降法求解多元函数系数4、打印系数和方程5、绘...原创 2020-04-04 17:20:01 · 2405 阅读 · 0 评论