Ubuntu18.04下基于YoloV4 的Keras物体识别

一、安装keras、tensorflow

注意:安装的keras和tensorflow版本要相匹配,安装keras、tensorflow建议连接手机热点下载
在这里插入图片描述
1.在此之前需要安装pip3

sudo apt install python3-pip

2.安装keras

sudo pip3 install keras==2.2.5

3.安装TensorFlow

sudo pip3 install tensorflow

二、下载Yolo V4-keras

1.下载Yolo V4-keras

git clone https://github.com/Ma-Dan/keras-yolo4

文件内容如下:
在这里插入图片描述

2.yolov4.weights权重文件下载,下载完成后放入Yolo V4-keras文件夹中
下载链接:https://pan.baidu.com/s/1FF79PmRc8BzZk8M_ARdMmw
提取码:dc2j
在这里插入图片描述
yolo4_weights.h5是coco数据集的权重;yolo4_voc_weights.h5是voc数据集的权重

3.VOC训练集、测试集下载
下载链接:https://pan.baidu.com/s/1OMLh9zTJhXCSh6PHgY4FsQ
提取码:t16q
解压

tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar

解压后将VOCdevkit文件夹名为count,将 count文件夹中的VOC2007为VOC2012

三、实现YoloV4 的Keras物体识别

1.修改test.py文件

gedit test.py

ROS默认的Python是2.7版本,本次YoloV4识别是在Python3环境下,所以我们需要解决环境路径的问题,在代码头部添加:

import sys
sys.path.remove('/opt/ros/melodic/lib/python2.7/dist-packages')

继续往下,找到main函数位置
在这里插入图片描述
2.准备一张物体多的图片,放入Yolo V4-keras文件夹中
在这里插入图片描述
3.终端测试

cd keras-yolo4
python3 test.py 

在这里插入图片描述
运行结果
在这里插入图片描述
再换一张图片试试
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值