一、安装keras、tensorflow
注意:安装的keras和tensorflow版本要相匹配,安装keras、tensorflow建议连接手机热点下载
1.在此之前需要安装pip3
sudo apt install python3-pip
2.安装keras
sudo pip3 install keras==2.2.5
3.安装TensorFlow
sudo pip3 install tensorflow
二、下载Yolo V4-keras
1.下载Yolo V4-keras
git clone https://github.com/Ma-Dan/keras-yolo4
文件内容如下:
2.yolov4.weights权重文件下载,下载完成后放入Yolo V4-keras文件夹中
下载链接:https://pan.baidu.com/s/1FF79PmRc8BzZk8M_ARdMmw
提取码:dc2j
yolo4_weights.h5是coco数据集的权重;yolo4_voc_weights.h5是voc数据集的权重
3.VOC训练集、测试集下载
下载链接:https://pan.baidu.com/s/1OMLh9zTJhXCSh6PHgY4FsQ
提取码:t16q
解压
tar xf VOCtrainval_06-Nov-2007.tar
tar xf VOCtest_06-Nov-2007.tar
解压后将VOCdevkit文件夹名为count,将 count文件夹中的VOC2007为VOC2012
三、实现YoloV4 的Keras物体识别
1.修改test.py文件
gedit test.py
ROS默认的Python是2.7版本,本次YoloV4识别是在Python3环境下,所以我们需要解决环境路径的问题,在代码头部添加:
import sys
sys.path.remove('/opt/ros/melodic/lib/python2.7/dist-packages')
继续往下,找到main函数位置
2.准备一张物体多的图片,放入Yolo V4-keras文件夹中
3.终端测试
cd keras-yolo4
python3 test.py
运行结果
再换一张图片试试