《机器学习》学习笔记:单变量线性回归

模型介绍

在这里插入图片描述

预测房价是一个回归问题。
假设训练集如下图所示
在这里插入图片描述

m m m代表训练集中实例的数量
x x x代表特征/输入变量
y y y代表目标变量/输出变量
(x,y) 代表训练集中的实例
( x ( i ) , y ( i ) ) (x^{(i)},y^{(i)}) (x(i),y(i)) 代表第 i i i个观察实例
h h h代表学习算法的解决方案或函数也称为假设(hypothesis)

在这里插入图片描述

h h h是从 x x x y y y的映射
一种可能的表达方式为:
h θ ( x ) = θ 0 + θ 1 x h_{\theta}(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x
因为只含有一个特征/输入变量,因此这样的问题叫作单变量线性回归问题.

代价函数

在这里插入图片描述

假设函数,也就是用来进行预测的函数,是这样的线性函数形式: h θ ( x ) = θ 0 + θ 1 x h_{\theta}(x)=\theta_0+\theta_1x hθ(x)=θ0+θ1x
接下来我们会引入一些术语我们现在要做的便是为我们的模型选择合适的参数(parameters) θ 0 \theta_0 θ0 θ 1 \theta_1 θ1,在房价问题这个例子中便是直线的斜率和在 y y y轴上的截距。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Hw6IK3MO-1623328148321)(image/2021-06-10-15-50-07.png)]

我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价函数 J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 \displaystyle J\left(\theta_0,\theta_1\right)=\frac{1}{2m}\sum_{i=1}^{m}\left(h_{\theta}(x^{(i)})-y^{(i)}\right)^2 J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2最小。

绘制一个等高线图,三个坐标分别为 θ 0 \theta_0 θ0, θ 1 \theta_1 θ1 J ( θ 0 , θ 1 ) J\left(\theta_0,\theta_1\right) J(θ0,θ1)
在这里插入图片描述

这种代价函数也被称作平方误差函数,有时也被称为平方误差代价函数。误差平方代价函数,对于大多数问题,特别是回归问题,都是一个合理的选择。还有其他的代价函数也能很好地发挥作用,但是平方误差代价函数可能是解决回归问题最常用的手段。
我们真正需要的是一种有效的算法,能够自动地找出这些使代价函数 J J J取最小值的参数 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1

梯度下降

梯度下降背后的思想是:开始时我们随机选择一个参数的组合 ( θ 0 , θ 1 , ⋯   , θ n ) \displaystyle \left(\theta_0,\theta_1,\cdots,\theta_n\right) (θ0,θ1,,θn),计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到到到一个局部最小值(local minimum),因为我们并没有尝试完所有的参数组合,所以不能确定我们得到的局部最小值是否便是全局最小值(global minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。
批量梯度下降(batch gradient descent)算法的公式为:
θ j : = θ j − α ∂ ∂ θ j J ( θ 0 , θ 1 ) ( f o r    j = 0    a n d    j = 1 ) \theta_j:=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J\left(\theta_0,\theta_1\right)\qquad\left(for\;j=0\;and\;j=1\right) θj:=θjαθjJ(θ0,θ1)(forj=0andj=1)

α \alpha α是学习率。它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有参数减去学习速率乘以代价函数的导数。
在梯度下降算法中,还有一个更微妙的问题,梯度下降中,我们要更新 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1,当    j = 0    \;j=0\; j=0    j = 1    \;j=1\; j=1时,会产生更新,所以你将更新 J ( θ 0 ) J(\theta_0) J(θ0) J ( θ 1 ) J(\theta_1) J(θ1)。实现梯度下降算法的微妙之处是,在这个表达式中,如果你要更新这个等式,你需要同时更新 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1,意思是在这个等式中,我们要这样更新: θ 0 : = θ 0 \theta_0:=\theta_0 θ0:=θ0,并更新 θ 0 : = θ 0 \theta_0:=\theta_0 θ0:=θ0。实现方法是:你应该计算公式右边的部分,通过那一部分计算出 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1的值,然后同时更新 θ 0 , θ 1 \theta_0,\theta_1 θ0,θ1.
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值