pandas获取最近7天或者10天的数据

本文通过实例演示了如何利用Pandas库在Python中获取数据框中最近10天的数据。首先将'Data_Date'列转换为日期格式,然后获取当前日期,接着使用'between'方法筛选出指定日期范围内的记录,最终得到最近10天的数据。这个过程展示了Pandas在日期处理和数据过滤方面的基本操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas获取最近10天的数据也是一个经常的应用,下面我们通过例子加以说明

>>> import pandas as pd
>>> import numpy as np
# 构建数据,当前时间是2021年3月23日
>>> df = pd.DataFrame({'Data_Date':['2021-03-11','2021-03-12','2021-03-13','2021-03-14','2021-03-15'], 'A':[132,343,212,322,311]})
>>> df
    Data_Date    A
0  2021-03-11  132
1  2021-03-12  343
2  2021-03-13  212
3  2021-03-14  322
4  2021-03-15  311

(1)将Data_Date列转换为日期格式

>>> df['Data_Date'] = pd.to_datetime(df['Data_Date'])
>>> df.dtypes
Data_Date    datetime64[ns]
A                     int64
dtype: object

(2)获取当前日期的标准格式

>>> today = pd.to_datetime('today').normalize()
>>> today
Timestamp('2021-03-23 00:00:00')

(3)使用between方法获取最近10天的数据

>>> mask =df['Data_Date'].between(today - pd.offsets.Day(10), today)
>>> mask
0    False
1    False
2     True
3     True
4     True
Name: Data_Date, dtype: bool

(4)最后获取相关数据

>>> df = df[mask]
>>> df
   Data_Date    A
2 2021-03-13  212
3 2021-03-14  322
4 2021-03-15  311

哈哈,还是挺简单的,有兴趣欢迎关注python小工具,一起学习python和pandas
在这里插入图片描述

### 使用 Pandas 进行蒙特利尔地区自行车行驶数据分析 #### 数据加载与预处理 在进行任何分析之,需要先将数据加载到 Pandas DataFrame 中并执行必要的清理操作。假设数据是以 CSV 文件形式提供,则可以使用 `pandas.read_csv` 函数来读取文件。 ```python import pandas as pd # 加载数据 data = pd.read_csv('montreal_bike_data.csv') # 查看几行以理解数据结构 print(data.head()) ``` 如果存在缺失值或不一致的数据项,可以通过以下方法解决: - 删除含有缺失值的记录:`data.dropna(inplace=True)`[^1]。 - 填充缺失值:`data.fillna(value, inplace=True)`,其中 `value` 可以为均值、中位数或其他合理数值。 #### 数据探索与清洗 为了更好地了解数据集的内容及其质量,在正式分析之应完成一些基本统计描述工作。这有助于识别潜在问题以及制定后续策略。 ```python # 获取基本信息 info_summary = data.info() # 描述性统计数据 descriptive_stats = data.describe() ``` 上述代码片段可以帮助我们快速掌握每列特征的大致范围和分布情况。对于时间序列类型的字段(如日期),建议将其转换成 Python 的 datetime 类型以便于进一步操作。 ```python # 转换 'date' 列为 datetime 格式 if 'date' in data.columns: data['date'] = pd.to_datetime(data['date']) ``` #### 特定领域内的高级分析 针对自行车出行模式的研究可能涉及多个维度,比如每日骑行次数的变化趋势、不同站点之间的流量对比等。下面列举几个常见场景的具体实现方式。 ##### 场景一:按汇总总骑乘量 通过设置索引为日期并将其他相关指标求和即可得到每的整体表现概况。 ```python daily_totals = data.set_index('date').resample('D')['rides'].sum() # rides 是代表单次行程计数的一列名 ``` ##### 场景二:绘制热力图展示高峰时段 利用 Seaborn 或 Matplotlib 库能够直观呈现哪些时间段最为繁忙。 ```python import seaborn as sns import matplotlib.pyplot as plt hourly_counts = data.groupby([data['date'].dt.hour])['rides'].mean().reset_index(name='avg_rides') plt.figure(figsize=(8,6)) sns.barplot(x="date", y="avg_rides", data=hourly_counts) plt.title('Average Rides Per Hour') plt.show() ``` 以上图表揭示了平均而言哪个小时段最常发生租借行为。 #### 结果可视化 最后一步就是把所得结论清晰表达出来。除了面提到过的条形图之外,还有折线图适合追踪长期变化轨迹;散点图则适用于寻找变量间的关系等等。 ```python # 折线图表示随时间推移的趋势 ax = daily_totals.plot(kind='line', figsize=(10,7), title="Daily Total Bike Trips Over Time") ax.set_xlabel("Date") ax.set_ylabel("# of trips"); ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值