一些函数的性质

点(.)是用于结构体变量访问成员,箭头(->)是用于结构体指针访问成员。

幂函数:y=x^a

5个重要例子类型:x^-1,x^1/2,x^1,x^2,x^3

复合函数之奇偶性:同奇为奇

①奇(偶)±奇(偶)=奇(偶),减法与加法同理

②奇(偶)×&÷奇(偶)=偶、奇(偶)×&÷偶(奇)=奇,除法与乘法同理

复合函数之单调性:同增异减

①整体加负号,单调性发生改变

②增(减)±增(减)=增(减)

③对称区间,奇(偶)函数单调性一致(相反)。(eg:[a,b],[-b,-a]为对称区间)

④反函数与原函数单调性一致

        反函数:

                求反函数:1.y=f(x)->x=f^-1(y)(读作,x等于f逆y)。此时两者其实是同一条曲线

                                  2.互换x与y,y=f^-1(x)(习惯上,x为自变量,y为因变量)

                性质:原函数与其反函数,关于y=x对称。因为求反函数时,互换了x与y,若不互换x与y,则两者为同一条曲线

科学家们定义,-1的平方根(即根号-1)=i。

除法运算是乘法运算的逆运算,被除数相当于积

0可以做被除数,但不能做除数。

指数函数:y=a^x(a>0且a≠1,负数没有)

对数函数:a^x=N(a>0且a≠1)->x=logaN,念作以a为底N的对数

对数函数是指数函数的反函数

对数函数的换底公式

  

平方根(一对(±))与算数平方根(一个)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值