点(.)是用于结构体变量访问成员,箭头(->)是用于结构体指针访问成员。
幂函数:y=x^a
5个重要例子类型:x^-1,x^1/2,x^1,x^2,x^3
复合函数之奇偶性:同奇为奇
①奇(偶)±奇(偶)=奇(偶),减法与加法同理
②奇(偶)×&÷奇(偶)=偶、奇(偶)×&÷偶(奇)=奇,除法与乘法同理
复合函数之单调性:同增异减
①整体加负号,单调性发生改变
②增(减)±增(减)=增(减)
③对称区间,奇(偶)函数单调性一致(相反)。(eg:[a,b],[-b,-a]为对称区间)
④反函数与原函数单调性一致
反函数:
求反函数:1.y=f(x)->x=f^-1(y)(读作,x等于f逆y)。此时两者其实是同一条曲线
2.互换x与y,y=f^-1(x)(习惯上,x为自变量,y为因变量)
性质:原函数与其反函数,关于y=x对称。因为求反函数时,互换了x与y,若不互换x与y,则两者为同一条曲线
科学家们定义,-1的平方根(即根号-1)=i。
除法运算是乘法运算的逆运算,被除数相当于积
0可以做被除数,但不能做除数。
指数函数:y=a^x(a>0且a≠1,负数没有)
对数函数:a^x=N(a>0且a≠1)->x=logaN,念作以a为底N的对数
对数函数是指数函数的反函数
对数函数的换底公式
平方根(一对(±))与算数平方根(一个)