EXCEL玩法之简单线性回归

如下所示为一个出行服务的订单金额与订单距离的记录表格,我们的目的是想要知道订单金额和订单距离之间有什么关系,步骤如下:

步骤一:确定x和y

最重要的第一步是确保回归项x在左侧,被回归项y在右侧,因此需调整上述表格中B列和C列的顺序如下:

步骤二:在“插入”选项卡下选择散点图

如图所示:

步骤三:图表设计-添加图表元素-趋势线-线性

步骤四:双击趋势线-显示对应选项卡-勾选“显示公式”

此时我们就得到了简单线性回归的公式了,可直接复制用于预测:

如上,就是本文所介绍的使用EXCEL进行简单线性回归的小方法了。

<think>嗯,用户想了解数据分析师实习的工作内容,并撰写一份1000字的报告。首先,我需要根据提供的引用内容整理相关信息,确保内容真实可靠。引用[3]提到游戏资料的分析,包括玩法、体验和数据表现,这可能是一个具体的案例。然后引用[2]提到业务前线岗位如市场、销售等转数据分析的优势,可能需要强调业务理解的重要性。引用[1]是关于深圳数据分析岗位的薪资和招聘情况,或许可以在工作内容中提及行业现状。 接下来,我需要结构化回答。通常实习报告包括职责概述、日常工作内容、技能要求、行业现状、职业发展等部分。要确保每个部分都有足够的细节,比如数据清洗、可视化、报告撰写等具体任务。同时,结合引用中的例子,如游戏数据分析,可以增加具体性。 另外,用户要求使用中文回答,且注意LaTeX格式的正确使用。虽然问题中没有数学表达式,但如果有相关数据分析方法的提及,可能需要用行内公式,比如$R^2$值。不过根据用户提供的引用内容,似乎不涉及复杂公式,可能不需要过多数学表达,但需要检查是否有必要。 还要注意生成相关问题,可能需要考虑用户后续可能感兴趣的方向,如技能提升、职业路径、工具学习等。确保问题与报告内容相关,帮助用户进一步探索。 最后,确保引用标识正确添加,例如在提到游戏数据分析时引用[^3],在转行建议时引用[^2],行业薪资时引用[^1]。需要自然地在段落末尾插入,不打断阅读流畅性。 现在需要把这些思考整合成结构清晰、分点明确的报告,满足1000字的要求。可能需要分几个大标题,每个标题下有子项,详细说明每个职责和任务。同时保持语言简洁明了,适合实习报告的风格。</think># 数据分析师实习生日常工作内容及职责说明报告 ## 一、岗位职责概述 数据分析师实习生主要协助团队完成数据采集、清洗、分析及可视化工作,为业务决策提供支持。其核心职责涵盖业务需求理解、数据建模、报告输出三大环节,需掌握SQL/Python基础工具,并具备业务场景转化能力[^2]。 ## 二、日常工作内容分解 ### 1. 数据基础处理 - **数据采集**:通过SQL查询数据库获取原始数据,例如提取用户行为日志: ```sql SELECT user_id, event_type, timestamp FROM game_logs WHERE date >= '2023-01-01' ``` - **数据清洗**:处理缺失值与异常值,使用Python进行数据预处理: ```python df.drop_duplicates(inplace=True) df['payment_amount'] = df['payment_amount'].apply(lambda x: x if x < 10000 else np.nan) ``` ### 2. 业务分析支持 - **多维分析**:构建$CTR=\frac{\text{点击量}}{\text{曝光量}}$等核心指标 - **A/B测试**:计算实验组/对照组转化率差异显著性,验证$p<0.05$的统计阈值 - **用户画像**:建立RFM模型($$R=最近消费时间, F=消费频次, M=消费金额$$) ### 3. 可视化与报告 - 使用Tableau/Power BI制作动态看板 - 撰写分析报告时需明确结论层级: ``` 营收下降归因: ├─新用户获取成本上升(同比+23%) ├─老用户复购率下降(环比-8%) └─促销活动ROI低于预期(1.2→0.8) ``` ## 三、典型工作场景 以游戏行业为例[^3]: 1. **玩法分析**:计算关卡通过率与付费转化相关性 2. **经济系统监控**:建立虚拟货币流通模型$$M_t = M_{t-1} + \Delta_{in} - \Delta_{out}$$ 3. **活动效果评估**:对比限时活动前后DAU/ARPPU变化 ## 四、能力要求矩阵 | 能力维度 | 具体要求 | 工具示例 | |---------|---------|---------| | 数据处理 | 掌握窗口函数、关联子查询 | SQL Server | | 统计分析 | 能完成线性回归、聚类分析 | Python sklearn | | 业务理解 | 理解用户生命周期价值(LTV) | Excel漏斗模型 | | 可视化 | 能设计交互式仪表盘 | Tableau | ## 五、行业现状与发展 深圳地区初级数据分析师月薪中位数达¥12,500,主要分布在电商、游戏、金融科技领域。企业更倾向录用具有业务落地经验(如市场/运营转岗)的候选人。 ## 六、实习价值与建议 实习期间建议重点突破: 1. 掌握至少一个行业分析框架(如游戏行业的PULSE指标体系) 2. 完成3-5个完整分析项目闭环 3. 建立数据分析思维导图: ``` 原始数据 → 数据加工 → 指标计算 → 趋势发现 → 归因分析 → 策略建议 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值