Excel做多元线性回归

一、EXCEL进行多元线性回归

1.首先需要下载一个数据分析的插件:

点击左上角文件->选项->加载项->分析工具库->转到-数据分析库->确定

 

下载好插件之后就可以看到这里多了一个数据分析

点击数据->数据分析

首先删除表里的非数据项,以进行多元线性回归

这里选择了所有的数据

二、多元线性回归模型预测房价

1.导入包

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

2.读入数据

df = pd.read_csv('E:\house_prices.csv')
df.info(); df.head()

3.输出结果

 三、变量探索

1.数据处理

# 异常值处理
# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定行,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower

 2.调用函数

outlier, upper, lower = outlier_test(data=df, column='price', method='z')
outlier.info(); outlier.sample(5)

3.结果

 4.删除错误数据

# 这里简单的丢弃即可
df.drop(index=outlier.index, inplace=True)

四、分析数据

1.定义变量

# 类别变量,又称为名义变量,nominal variables
nominal_vars = ['neighborhood', 'style']

for each in nominal_vars:
    print(each, ':')
    print(df[each].agg(['value_counts']).T)
    # 直接 .value_counts().T 无法实现下面的效果
     ## 必须得 agg,而且里面的中括号 [] 也不能少
    print('='*35)
    # 发现各类别的数量也都还可以,为下面的方差分析做准备

# 热力图 
def heatmap(data, method='pearson', camp='RdYlGn', figsize=(10 ,8)):
    """
    data: 整份数据
    method:默认为 pearson 系数
    camp:默认为:RdYlGn-红黄蓝;YlGnBu-黄绿蓝;Blues/Greens 也是不错的选择
    figsize: 默认为 10,8
    """
    ## 消除斜对角颜色重复的色块
    #     mask = np.zeros_like(df2.corr())
    #     mask[np.tril_indices_from(mask)] = True
    plt.figure(figsize=figsize, dpi= 80)
    sns.heatmap(data.corr(method=method), \
                xticklabels=data.corr(method=method).columns, \
                yticklabels=data.corr(method=method).columns, cmap=camp, \
                center=0, annot=True)
    # 要想实现只是留下对角线一半的效果,括号内的参数可以加上 mask=mask

 2.调用函数输出结果

# 通过热力图可以看出 area,bedrooms,bathrooms 等变量与房屋价格 price 的关系都还比较强
 ## 所以值得放入模型,但分类变量 style 与 neighborhood 两者与 price 的关系未知
heatmap(data=df, figsize=(6,5))

 四、拟合

1.代码:

    
import statsmodels.api as sm
from statsmodels.formula.api import ols # ols 为建立线性回归模型的统计学库
from statsmodels.stats.anova import anova_lm
df = df.copy().sample(600)

# C 表示告诉 Python 这是分类变量,否则 Python 会当成连续变量使用
## 这里直接使用方差分析对所有分类变量进行检验
## 下面几行代码便是使用统计学库进行方差分析的标准姿势
lm = ols('price ~ C(neighborhood) + C(style)', data=df).fit()
anova_lm(lm)

# Residual 行表示模型不能解释的组内的,其他的是能解释的组间的
# df: 自由度(n-1)- 分类变量中的类别个数减1
# sum_sq: 总平方和(SSM),residual行的 sum_eq: SSE
# mean_sq: msm, residual行的 mean_sq: mse
# F:F 统计量,查看卡方分布表即可
# PR(>F): P 值

# 反复刷新几次,发现都很显著,所以这两个变量也挺值得放入模型中

2.结果:

 3.多元线性回归建模

代码:

from statsmodels.formula.api import ols

lm = ols('price ~ area + bedrooms + bathrooms', data=df).fit()
lm.summary()

结果:

 四、sklearn多元线性回归预测房价

1.导入包

import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt # 画图
from sklearn import linear_model # 线性模型
data = pd.read_csv('E:\house_prices.csv') #读取数据,改为
data.head() #数据展示

2.结果

 

2.去除第一列house_id

代码:

new_data=data.iloc[:,1:] #除掉id这一列
new_data.head()

 

 关系矩阵显示:

new_data.corr() # 相关系数矩阵,只统计数值列

 

赋值变量

代码:

x_data = new_data.iloc[:, 0:5] #area、bedrooms、bathroom对应列
y_data = new_data.iloc[:, -1] #price对应列
print(x_data, y_data, len(x_data))

 建立模型并输出:

# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:", model.intercept_)
print('回归方程: price=',model.coef_[0],'*neiborhood+',model.coef_[1],'*area +',model.coef_[2],'*bedrooms +',model.coef_[3],'*bathromms +',model.coef_[4],'*sytle ',model.intercept_)

 对数据清洗后再求解

new_data_Z=new_data.iloc[:,0:]
new_data_IQR=new_data.iloc[:,0:]

# ================ 异常值检验函数:iqr & z分数 两种方法 =========================
def outlier_test(data, column, method=None, z=2):
    """ 以某列为依据,使用 上下截断点法 检测异常值(索引) """
    """ 
    full_data: 完整数据
    column: full_data 中的指定行,格式 'x' 带引号
    return 可选; outlier: 异常值数据框 
    upper: 上截断点;  lower: 下截断点
    method:检验异常值的方法(可选, 默认的 None 为上下截断点法),
            选 Z 方法时,Z 默认为 2
    """
    # ================== 上下截断点法检验异常值 ==============================
    if method == None:
        print(f'以 {column} 列为依据,使用 上下截断点法(iqr) 检测异常值...')
        print('=' * 70)
        # 四分位点;这里调用函数会存在异常
        column_iqr = np.quantile(data[column], 0.75) - np.quantile(data[column], 0.25)
        # 1,3 分位数
        (q1, q3) = np.quantile(data[column], 0.25), np.quantile(data[column], 0.75)
        # 计算上下截断点
        upper, lower = (q3 + 1.5 * column_iqr), (q1 - 1.5 * column_iqr)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        print(f'第一分位数: {q1}, 第三分位数:{q3}, 四分位极差:{column_iqr}')
        print(f"上截断点:{upper}, 下截断点:{lower}")
        return outlier, upper, lower
    # ===================== Z 分数检验异常值 ==========================
    if method == 'z':
        """ 以某列为依据,传入数据与希望分段的 z 分数点,返回异常值索引与所在数据框 """
        """ 
        params
        data: 完整数据
        column: 指定的检测列
        z: Z分位数, 默认为2,根据 z分数-正态曲线表,可知取左右两端的 2%,
           根据您 z 分数的正负设置。也可以任意更改,知道任意顶端百分比的数据集合
        """
        print(f'以 {column} 列为依据,使用 Z 分数法,z 分位数取 {z} 来检测异常值...')
        print('=' * 70)
        # 计算两个 Z 分数的数值点
        mean, std = np.mean(data[column]), np.std(data[column])
        upper, lower = (mean + z * std), (mean - z * std)
        print(f"取 {z} 个 Z分数:大于 {upper} 或小于 {lower} 的即可被视为异常值。")
        print('=' * 70)
        # 检测异常值
        outlier = data[(data[column] <= lower) | (data[column] >= upper)]
        return outlier, upper, lower
outlier, upper, lower = outlier_test(data=new_data_Z, column='price', method='z')
outlier.info(); outlier.sample(5)

# 这里简单的丢弃即可
new_data_Z.drop(index=outlier.index, inplace=True)

输出结果:

 4price 列为依据,使用 上下截断点法(iqr) 检测异常值

outlier, upper, lower = outlier_test(data=new_data_IQR, column='price')
outlier.info(); outlier.sample(6)

# 这里简单的丢弃即可
new_data_IQR.drop(index=outlier.index, inplace=True)

输出数据相关矩阵

print("原数据相关性矩阵")
new_data.corr()

 

Z方法处理的数据相关性矩阵

在这里插入代码片print("Z方法处理的数据相关性矩阵")
new_data_Z.corr()

 

 建模输出:

x_data = new_data_Z.iloc[:, 0:5]
y_data = new_data_Z.iloc[:, -1]
# 应用模型
model = linear_model.LinearRegression()
model.fit(x_data, y_data)
print("回归系数:", model.coef_)
print("截距:", model.intercept_)
print('回归方程: price=',model.coef_[0],'*neiborhood+',model.coef_[1],'*area +',model.coef_[2],'*bedrooms +',model.coef_[3],'*bathromms +',model.coef_[4],'*sytle ',model.intercept_)

 

五、总结

通过对多元线性回归的模拟,加深了对EXCEL的使用经验,也学会了如何使用使用sklearn库调用函数的方法,对sklearn的使用也更加熟练。

六、参考

多元线性回归算法预测房价

多元线性回归分析

数据清洗技术——Excel数据清洗

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论 2

打赏作者

TT17

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值