MNN框架学习(一)

MNN是一款轻量级的深度学习推理引擎,适用于移动端和IoT设备。其特点是文件小巧、通用性强、运行高效且易于使用。通过支持多种模型格式和网络结构,MNN提供了一个从Tensorflow模型转换到MNN模型的流程,并提供了姿态检测的示例应用,用户可以运行预训练模型对输入图片进行姿态检测。
摘要由CSDN通过智能技术生成

目录

MNN框架是什么?

MNN特点

跑通第一个demo


MNN框架是什么?

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测,端侧可以是手机端或者IOT端,是推动深度学习算法落地的重要工具

 

MNN特点

  1. 轻量性:MNN文件很小,只有几兆,可以方便地部署到移动设备和各种嵌入式设备
  2. 通用性:支持TensorflowCaffeONNX等主流模型文件格式,支持CNNRNNGAN等常用网络,具有多种OP
  3. 高效性:第三方计算库,依靠大量手写汇编实现核心运算
  4. 易用性:   有高效的图像处理模块,覆盖常见的形变、转换等需求,支持回调机制,可以在网络运行中插入回调,提取数据或者控制运行走向

跑通第一个姿态检测demo

  1. 网址github ,下载mnn
  2. 安装3.0以上版本的protobuf
  3. 按照以下步骤进行
    cd mnn
    cd schema && ./generate.sh
    
    mkdir build && cd build
    
    cmake -DMNN_BUILD_DEMO=ON ..
    
    make -j8

     

  4. 把tensorflow模型转换成mnn模型tensorflow模型
    ./MNNConvert -f TF --modelFile XXX.pb --MNNModel XXX.mnn --bizCode biz

     

  5.  执行姿态检测程序,其中input.jpg为输入图片名称,pose.png为输出图片名称

    ./multiPose.out model.mnn input.jpg pose.png

参考链接:https://www.yuque.com/mnn/cn/about

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值