【随机过程】第二章——随机过程概论

教学内容

  • 第一章 随机过程概论

    • 预备知识
  • 第二章 随机过程概论

    • 随机过程的基本概念
    • 分布律和数字特征
    • 几种重要的随机过程
  • 第三章 泊松过程

    • 泊松过程
    • 非齐次泊松过程
    • 复合泊松过程
    • 泊松过程的应用
  • 第四章 马尔可夫链

    • MC的概念及转移概率
    • MC的状态分类
    • 状态空间的分解
    • P i j ( n ) P_{ij}(n) Pij(n)的渐近性质与平稳分布
    • 嵌入马尔可夫链
  • 第五章 连续时间的马尔可夫链

    • 连续时间的MC
    • 柯尔莫哥洛夫微分方程
    • 生灭过程
    • 布朗运动
    • 向后与向前扩散方程
  • 第六章 平稳随机过程

    • 平稳过程的概念与例子
    • 联合平稳过程及相关函数性质
    • 随机分析
    • 平稳过程的各态历经性
  • 第七章 平稳随机过程的谱分析

    • 平稳过程的谱密度
    • 谱密度的性质
    • 窄带过程及白噪声过程的功率
    • 谱密度

随机过程的定义

( Ω , F , P ) (\Omega,\mathcal{F},P ) (Ω,F,P)是概率空间, T T T是指标参数集,若对每个 t ∈ T t\in T tT ,有一个随机变量 ξ ( t , w ) ≜ ξ t ( w ) \xi(t,w)\triangleq\xi_t(w) ξ(t,w)ξt(w) 与之对应,则称随机变量族 { ξ t ( ω ) , t ∈ T } \{\xi_t(\omega),t\in T\} {ξt(ω),tT} 是概率空间上的随机过程。称 ξ t ( ω ) \xi_t(\omega) ξt(ω)的所有可能状态所构成的集合为状态空间,记为 S S S

  • Bernoulli过程、正弦波过程

随机过程的分类

根据时间参数集 T T T的性质,随机过程可分为两类:

  • 离散时间的随机过程
  • 连续时间的随机过程

根据状态空间集 S S S的性质,随机过程可分为两类:

  • 离散状态的随机过程
  • 连续状态的随机过程

同时考虑 T T T S S S

  • 离散时间离散状态的随机过程(Bernoulli过程、随机游动)
  • 离散时间连续状态的随机过程(股市每日的最高价格)
  • 连续时间离散状态的随机过程(Possion过程)
  • 连续时间连续状态的随机过程(Brown过程)

随机过程的研究途径

  • 概率分析(Markov过程、扩散过程)
  • 时域分析(平稳过程、二阶矩过程)

有限维分布族

假设 { ξ t ( ω ) , t ∈ T } \{\xi_t(\omega),t\in T\} {ξt(ω),tT} 是概率空间 ( Ω , F , P ) (\Omega,\mathcal{F},P ) (Ω,F,P)上的随机过程,对任意的自然数 n n n ,以及 T T T中任意个 t 1 , t 2 , … , t n t_1,t_2,\dots,t_n t1,t2,,tn ,记 F t 1 , t 2 , … , t n ( x 1 , x 2 , … , x n ) = P { ξ ( t 1 ) < x 1 , ⋯   , ξ ( t n ) < x n } F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n)=P\{\xi(t_1)<x_1,\cdots,\xi(t_n)<x_n\} Ft1,t2,,tn(x1,x2,,xn)=P{ξ(t1)<x1,,ξ(tn)<xn} F t 1 , t 2 , … , t n F_{t_1,t_2,\dots,t_n} Ft1,t2,,tn n n n维随机向量 ( ξ ( t 1 ) , ⋯   , ξ ( t n ) ) (\xi(t_1),\cdots,\xi(t_n)) (ξ(t1),,ξ(tn))的联合分布,称为随机过程 { ξ t ( ω ) , t ∈ T } \{\xi_t(\omega),t\in T\} {ξt(ω),tT} 的一有限维分布。称函数族 { F t 1 , t 2 , … , t n ( x 1 , x 2 , … , x n ) : n ∈ N , t 1 , ⋯   , t n ∈ T } \{F_{t_1,t_2,\dots,t_n}(x_1,x_2,\dots,x_n):n\in N, t_1,\cdots,t_n\in T\} {Ft1,t2,,tn(x1,x2,,xn):nN,t1,,tnT} 为随机过程 { ξ t ( ω ) , t ∈ T } \{\xi_t(\omega),t\in T\} {ξt(ω),tT} 的有限维分布族。

有限维分布族的性质

  • 对称性
  • 相容性

柯尔莫哥洛夫定理

定理说明了随机过程的有限维分布族包含了其所有概率信息。因此,可通过有限维分布函数族来研究随机过程的统计特征。

  • 例题:随机游动、脉冲数字信号系统(离散型、随机型)

随机过程的数字特征(必考)

  • 均值(m)、方差、 协方差、相关函数
  • 例题:三角函数(应用微积分知识)、随机电报信号

两个随机过程的联合分布和数字特征

二维随机过程的联合分布函数

{ X ( t ) , t ∈ T } \{X(t), t\in T\} {X(t),tT} { Y ( t ) , t ∈ T } \{Y(t), t\in T\} {Y(t),tT}是两个随机过程,称 { X ( t ) , Y ( t ) } \{X(t), Y(t)\} {X(t),Y(t)}为二维随机过程,其中 X ( t ) X(t) X(t) m m m维, Y ( t ) Y(t) Y(t) n n n维,称其分布函数为 m + n m+n m+n维分布函数。在两者相互独立时可以直接用边缘分布函数相乘得到。

二维随机过程的数字特征

  • 互相关函数 R X Y ( s , t ) R_{XY}(s,t) RXY(s,t)
  • 互协方差函数 C X Y ( s , t ) C_{XY}(s,t) CXY(s,t)
  • C X Y ( s , t ) = R X Y ( s , t ) − m X ( s ) m Y ( t ) C_{XY}(s,t)=R_{XY}(s,t)-m_X(s)m_Y(t) CXY(s,t)=RXY(s,t)mX(s)mY(t)
  • 当两者相互独立时,即 C X Y ( s , t ) = 0 C_{XY}(s,t)=0 CXY(s,t)=0时,两者不相关。

复随机过程

  • 定义:设 { X ( t ) , t ∈ T } \{X(t), t\in T\} {X(t),tT} { Y ( t ) , t ∈ T } \{Y(t), t\in T\} {Y(t),tT}是定义在同一概率空间上的两个随机过程,令 Z ( t ) = X ( t ) + i Y ( t ) , t ∈ T Z(t)=X(t)+iY(t),t\in T Z(t)=X(t)+iY(t),tT,则称 { Z t , t ∈ T } \{Z{t},t\in T\} {Zt,tT}为复随机过程。
  • 数字特征:均值、方差、协方差、相关函数、互协方差函数、互相关函数

几类重要的随机过程

  1. 二阶矩过程:随机过程 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT}的一、二阶矩存在,称其为二阶矩过程。
  2. 正态过程: n维正态随机变量构成为正太过程(高斯过程)。正太过程是二阶矩过程。
  3. 独立增量过程: X ( t 2 − t 1 ) , X ( t 3 − t 2 ) , ⋯   , X ( t n − t n − 1 ) X(t_2-t_1),X(t_3-t_2),\cdots,X(t_n-t_{n-1}) X(t2t1),X(t3t2),,X(tntn1)是相互独立的随机变量。此外,如果任意 s < t ∈ T , X ( t ) − X ( s ) s<t\in T, X(t)-X(s) s<tT,X(t)X(s)分布仅依赖于 t − s t-s ts,而与 s , t s,t s,t本身取值无关,则称 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT}为平稳增量过程;当 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT}既是平稳增量过程,也是平稳增量过程,则称 { X ( t ) , t ∈ T } \{X(t),t\in T\} {X(t),tT}为平稳的独立增量过程。
  4. Wiener过程:满足下列条件:
  • W ( 0 ) = 0 W(0)=0 W(0)=0
  • { W ( t ) , t ≥ 0 } \{W(t), t\geq0\} {W(t),t0}是平稳的独立增量过程;
  • ∀ 0 ≤ s < t , W ( t ) − W ( s ) ∼ N ( 0 , σ 2 ( t − s ) ) ⋅ 1 2 \forall 0\leq s<t, W(t)-W(s)\sim N(0,\sigma^2(t-s))\cdot\frac{1}{2} ∀0s<t,W(t)W(s)N(0,σ2(ts))21
    性质:
  • ∀ t > 0 , W ( t ) ∼ N ( 0 , σ 2 t ) \forall t>0, W(t)\sim N(0,\sigma^2t) t>0,W(t)N(0,σ2t)
  • 数字特征:
    m W ( t ) = 0 ; D W ( t ) = σ 2 t ; R W ( s , t ) = C W ( s , t ) = σ 2 m i n ( s , t ) m_W(t)=0; D_W(t)=\sigma^2t; R_W(s,t)=C_W(s,t)=\sigma^2min(s,t) mW(t)=0;DW(t)=σ2t;RW(s,t)=CW(s,t)=σ2min(s,t)
  1. 平稳过程:严平稳性;宽平稳性
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值