凸数据集与凸函数

凸数据集与凸函数

凸数据集

如果一个数据集D是凸的,那么对于其中任意的两点x,y∈D,θ∈R,0≤θ≤1,

则 θ x + ( 1 − θ ) y ∈ D
表达式θx+(1−θ)y被称作点x , y 的凸性组合(convex combination)

通俗的讲,就是数据集D中任意两点的连线上的点,也在数据集D内,那么数据集D就是一个凸集。
如下图,左边非凸,右边为凸
在这里插入图片描述
常见的凸数据集:
1. R n R^n Rn,n维实数空间,由定义可知
2.凸集的交集
3.n维半正定矩阵的集合

参考链接:https://blog.csdn.net/qq_19528953/article/details/88600926

凸函数

定义

一个函数f : R n R^n Rn → R,如果它的域D(f)是一个凸集,
在这里插入图片描述
那么函数f 就是一个凸函数
几何上,任意两点的连线在这两点函数部分的上面。

判定方法

  1. 一阶充分必要条件(不好用)
    对于凸集D(f), 任意两点x,y ∈ D, 有
    f ( y ) f(y) f(y) f ( x ) f(x) f(x)+ ∇ x ∇_x x f ( x ) T f(x)^T f(x)T ( y − x ) (y−x) (yx)

  2. 二阶充分必要条件
    ∇ x 2 ∇^2_x x2 f ( x ) f(x) f(x)≥0

  3. 举例子
    i. 指数函数 是凸函数,如 f(x)= e a x e^{ax} eax , a∈R
    其二阶导数 f ′ ′ ( x ) f ^{′ ′ }( x ) f(x) = a 2 a^2 a2 $e^{a x} $

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

laufing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值