蓝桥杯试题 算法训练 K好数 C/C++

试题 算法训练 K好数

资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式
输入包含两个正整数,K和L。

输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

思路:本题是一道动态规划题,所以需要记录每次计算得出来的值,便于下面更好的计算,如这个公式:a[i][j]=a[i-1][t] (0<t<k)(我觉得公式不是唯一的,大家可以自己计算推出适合自己的公式);需要累加大于零小于k的值,当然也需要考虑判定情况,两边的数不能取到,由于数量比较大所以需要对1000000007取余。

代码如下:

#include<iostream>
using namespace std;
int main(){
	long long k,l,i,j,u,sum=0,a[111][111];
	cin>>k>>l;
	for(i=0;i<k;i++){
		a[1][i]=1;
	}
	for(i=2;i<=l;i++){
		for(j=0;j<k;j++){
			for(u=0;u<k;u++){
				if((u!=j-1)&&(u!=j+1)){
					a[i][j]+=a[i-1][u];
					a[i][j]%=1000000007; 
				}
			}
		}
	}
	for(i=1;i<k;i++){
		sum+=a[l][i];
		sum%=1000000007;
	}
	cout<<sum;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值