参数模型与非参数模型

本文探讨了机器学习中的参数模型与非参数模型的区别,参数模型基于有限参数假设,如线性模型,而非参数模型则对数据分布不做特定假设,通过数据拟合学习函数。
摘要由CSDN通过智能技术生成

参数模型和非参数模型是机器学习中的两个重要概念。在统计学中,参数模型通常假设总体服从某个分布,这个分布可以由一些参数确定,在此基础上构建的模型称为参数模型;非参数模型对于总体的分布不做任何假设或者说是数据分布假设自由,只知道其分布是存在的,所以就无法得到其分布的相关参数,只能通过非参数统计的方法进行推断。

需要注意,有参数模型它的参数是有限的,可以指定出θ1, θ2, …, θn;而非参数模型也并不是没有参数,而是参数的数目很多但不确定具体数量。

在机器学习中,参数模型和非参数模型都是用来学习一个函数,通过输入变量映射为输出变量。 参数机器学习模型由于指定了目标函数的形式,所以可以极大地简化这个学习的过程,但是同样会限制学习的过程。 非参数机器学习算法对目标函数形式不做过多的假设,因此算法可以通过对训练数据进行拟合而学习出某种形式的函数。

总结

参数模型:训练前会预设一部分参数,如线性模型会假设数据是线性的。

非参数模型不是指它不包括任何参数,而是指训练前没有确定参数的数量。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值