推荐系统Part4:Wide&Deep

Wide&Deep模型结合了线性模型的记忆能力和深度神经网络的泛化能力,被应用于Google Play的推荐系统中。Wide部分为线性模型,用于捕捉特征交互,Deep部分是前馈网络,用于特征转换和非线性表达。两者通过加权合并并使用logistic loss训练,以优化整体预测。推荐系统首先召回相关items,然后基于用户特征、上下文特征和印象特征进行排序,最后推荐给用户。
摘要由CSDN通过智能技术生成

1.介绍

Wide and deep 模型是 TensorFlow 在 2016 年 6 月左右发布的一类用于分类和回归的模型,并应用到了 Google Play 的应用推荐中。wide and deep 模型的核心思想是结合线性模型的记忆能力(memorization)和 DNN 模型的泛化能力(generalization),在训练过程中同时优化 2 个模型的参数,从而达到整体模型的预测能力最优。
记忆(memorization)即从历史数据中发现item或者特征之间的相关性。
泛化(generalization)即相关性的传递,发现在历史数据中很少或者没有出现的新的特征组合。

论文链接:https://arxiv.org/pdf/1606.07792.pdf


2.原理

2.1 W&D模型的网络结构

在这里插入图片描述

● Wide部分就是基础的线性模型。

● Deep部分就是个前馈网络模型。

1.Wide部分:
Wide部分就是基础的线性模型,表示为y=WX+b。X特征部分包括基础特征和交叉特征。交叉特征在wide部分很重要,可以捕捉到特征间的交互,起到添加非线性的作用。
交叉特征可表示为:
在这里插入图片描述


2.Deep部分
Deep部分就是个前馈网络模型。特征首先转换为低维稠密向量,维度通常O(10)-O(100)。向量随机初始化,经过最小化随时函数训练模型。激活函数采用Relu。前馈部分表示如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值