RandomForestClassifier/Regressor

本文介绍了随机森林算法,包括集成算法的概念、RandomForestClassifier的决策树思想、n_estimators参数的影响、随机性的重要性以及random_state、bootstrap和oob_score的作用。同时,讨论了RandomForestRegressor在回归问题中的应用,并举例展示了如何用回归森林填补缺失值。最后,文章探讨了调参中的泛化误差思想,以及模型复杂度与泛化误差之间的关系。
摘要由CSDN通过智能技术生成

1.集成算法(ensemble )

        1.集成评估器

                       

        

bagging 多个相互独立的评估器,对其预测进行平均或多数表决原则来决定评估器的结果
boosting 基评估器相关,按顺序一一构建,结合若评估器构成强评估器

 2.RandomForestClasifier

        1.决策树思想

        2.基评估器参数 

 

         3.n_estimators

        控制树木的数量,对模型精确度影响是单调增的,但有决策边界,过大会影响训练时间

super=[]
for i in range(200
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值