sklearn库学习----随机森林(RandomForestClassifier,RandomForestRegressor)

本文介绍了集成学习中的随机森林算法,详细讲解了随机森林在sklearn库中的使用,包括模型参数设置、随机森林分类器和回归器的应用。通过对比随机森林与单个决策树,展示了随机森林在提高模型准确性和稳定性方面的优势。并提供了随机森林在红酒数据集和boston数据集上的实际应用案例。
摘要由CSDN通过智能技术生成

概述

集成算法

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个横型,集成所有模型的建模结果,基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林(入门级别容易上手),梯度提升树(GBDT) , Xgboost等集成算法的身影也随处可见,可见其效果之好,应用之广.

多个模型集成后的模型叫做集成评估器,集成评估器中的每一个模型叫做基评估器,通常来说有三类集成算法:Bagging、Boosting、Stacking
随机森林是Bagging的代表模型, 他所有的基评估器都是决策树。Bagging法中每一个基评估器是平行的,最后的结果采用平均值或者少数服从多数的原则

集成算法的目标

集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合结果,以此来获取比单个模型更好的回归或分类表现

随机森林再sklearn中的位置

随机森林在sklearn中ensemble模块下

from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor

控制基评估器的参数,与决策树参数一样

参数 作用
criterion 不纯度的衡量指标,有基尼系数和信息增益两种
max_depth 树的最大深度
min_samples_leaf 一个节点分支后,子节点必须最少包含的样本数,如果不能满足条件将不能发生分支
min_samples_split 一个节点如果要发生分支操作,必须要包含的最小样本数,不满足则不能分支
max_features 限制分支时考虑的特征个数
min_impurity_decrease 限制信息增益的减小,信息增益小于限定值时不发生分支

随机森林模型参数

  • n_estimators : 推荐0-200之间的数值
    这是森林中树木的数量,即基基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。
  • random_state :控制生成随机森林的模式。并不能控制森林中的树的样式。随机性越大,模型效果越好,当然这样可能就不是很稳定,不便于调试。想要模型稳定,可以设置random_state参数
  • bootstrap :控制抽样技术的参数,默认为True。采用有放回的随机抽样数据来形成训练数据。
    对我们传入随机森林模型的数据集,对每一个基评估器采用有放回的随机抽样从原始数据集中抽取n个样本来组成自助集,并将自助集作为基评估器的训练数据。这样的作法大大增加了随机性,提高了模型的效果。
    由于有放回,所以有一些样本可能在某些自助集中出现多次,而其他的一些样本可能被忽略。一般来说,自助集一般会包含63%的原始数据。那些被浪费掉的数据被称为袋外数据(out of bag data 简称oob)。除了我们最开始就划分好训练测试集外,这些被忽略的数据也可以用来作为测试集,也就是说在使用随机森林模型的时候可以不用划分数据集,只需要用袋外数据来测试我们的模型即可。当样本数量,和随机森林中树的数量不大的情况下,可能没有数据在袋外,也就不能用oob来测试模型了。
  • oob_score :默认为False,True表示用袋外数据来测试模型。可以通过oob_score_来查看模型的准取度。

随机森林分类器示例

通过红酒数据集来测试随机森林模型,并比较随机森林和决策树在这个数据集下的表现。

导包
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score # 交叉检验
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False #用来正常显示负号

加载数据集并分割训练集测试集

# 加载数据集
wine = load_wine()
X = wine['data']
y = wine['target']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

建立随机森林分类器模型和分类决策树,比较两个模型在的表现

# 训练随机森林,决策树模型,比较两种模型

# 建立随机森林分类器模型,并获得得分
rfc = RandomForestClassifier(random_state=1)
rfc.fit(X_train, y_train
  • 17
    点赞
  • 131
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
随机森林(Random Forest)是一种集成学习(Ensemble Learning)方法,它通过构建多个决策树来进行分类或回归。scikit-learn是一个流行的Python机器学习,提供了实现随机森林算法的工具。 在scikit-learn中,可以使用ensemble模块中的RandomForestClassifier进行分类问题,或者使用RandomForestRegressor进行回归问题。随机森林通过随机选择特征子集和样本子集来构建多个决策树,然后通过投票或平均的方式来得到最终的预测结果。 使用scikit-learn中的随机森林算法,需要先导入相关的类和函数,然后创建一个随机森林模型对象,并对其进行训练和预测。例如,下面是一个使用随机森林分类器进行分类的示例代码: ```python from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 加载数据集 data = load_iris() X = data.data y = data.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 创建随机森林分类器 rf = RandomForestClassifier(n_estimators=100) # 训练模型 rf.fit(X_train, y_train) # 预测 predictions = rf.predict(X_test) ``` 这只是一个简单的示例,你可以根据自己的需求进行参数调整和功能扩展。随机森林在处理各种机器学习问题时具有较好的性能和鲁棒性,你可以进一步了解scikit-learn文档中关于RandomForestClassifierRandomForestRegressor的详细用法和参数设置。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值