PF-ZFBF

论文学习

一类最广泛的调度问题可以描述为加权和速率最大问题

 

 其中uk和Rk分别是在调度决策S下的,t时刻用户k的权重和数据速率。易知在uk=1时,问题退化成和速率最大问题。通常uk的选择基于不同的标准,如出于稳定性的队列长度,出于公平性的平均过去吞吐量。

比例公平调度(PFS)是在同一时刻利用了多用户分级增益的情景下为了满足用户间公平性的一种简单的设计。特别是初始的PFS,基站调度利用最大权重吞吐量来获得单用户kopt,其中Rk计算如公式(57),权重的更新如(58),(59),窗口时间的大小tc适当选择。

 文中所提出的PF-ZFBF算法,使用ZFBF-SUS将PFS算法服务多用户,将PFS应用于ZFBF-SUS的一个巧妙的点:不像初始的PFS中,Rk在调度决策被做出之前就能获取,ZFBF-SUS中Rk只有在用户组S中的用户完全选择完之后才能计算。因此在PF-ZFBF中,确切的Rk是未知的当决策没做出之前。值得注意的一点是,因为由SUS选出的用户都是半正交的,我们可以近似Rk

 如果选出的用户是完全正交的,并且分配了相等的功率,这个近似Rk=Rk。利用这种近似,PF-ZFBF工作流程如下:

(1)在时刻t,执行SUS算法获得S=S0,并将Π(i)做出如下修正:

 (2)对H(S)应用ZFBF获得属于用户集S的用户k的真实的支持数据速率Rk。uk(t+1)执行如下更新:

 使用的真实时间Rk s。

总结:PF-ZFBF主要就是利用了PFS的思想,利用最大权重和速率求出用户,不过不同的是PFS求出的S是一个单用户集合,而PF-ZFBF利用了SUS,Rk(S,t)中的S是多用户。因此Rk用的就是近似值。

疑问:对于t有点疑惑,所有的结果都是基于t时刻算出来的。那么t有什么用,是利用最后的Rk秒来求出这段时间所有的S吗?利用RRS的思想?

或者说Rks并不是时间?t还是前一节RR-ZFBF中的一个slot,依旧是说PF-ZFBF又是在RR-ZFBF上改进的:不同的是RR-ZFBF中每一次的用户集合都不断减少,而PF-ZFBF的用户集合每次都是一样的,不过每轮挑选都使用了不同的权重

 

性能分析

下图对比了RR-ZFBF和PF-ZFBF的和速率,前提条件是所有用户都被假设拥有相同的平均SNR且经历独立的瑞利衰落信道。

与和速率最大调度方案(ZFBF-SUS)对比,所有公平调度算法都会为了公平性而牺牲一点rate。PF-ZFBF的吞吐量多余RR-ZFBF的原因是其从多用户分集中受益了。这与上文分析中的一致S = kopt只是一个用户,而S = S0,是一组用户。RR-ZFBF的优缺点很明显,缺:1仅仅关注用户信道的正交性,并没有考虑信道增益的波动。2在T个时隙内用户信道必须保持不变。优:能够提供确定的公平性。即在整个调度周期(T slots)每个用户都能保证被调度一次。

 为了比较公平性,作者画了一个图来比对每个用户的平均数据速率。其中K = 50,SNRs范围是0到20db,可以得到所提出的PF-ZFBF和RR-ZFBF确实能够实现公平性,且比RRS更好。说明在这几种方式之下每个用户都有机会获得相同的速率,不论SNR的区别。而ZFBF-SUS明显的上升,说明其对于SNR较高的用户有很强的倾向,即在大概索引35之后的用户的平均速率快速上述。 也由此说明其并没有考虑到公平性,这与前文说明一致。正是由于ZFBF-SUS未考虑SNR不同情况下用户选择的公平性,才将RRS,PFS这类实现公平性的方法引入,来实现公平调度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值