Introduction to Linear Optimization 2.4 退化问题

1.退化

退化的定义

Definition 2.10 A basic solution x ∈ Rn is said to be degenerate if more than n of the constraints are active at x .

从 2.2 节(忘记的同志们点我复习)中我们可以知道,对于一个基可行解来说,通常情况下有 n 个严格不等式对其进行约束,退化问题即为:对于某个基可行解,在该点的严格约束个数超过了 n 个,我们将这种情况称之为退化。

我们从下图来从几何的角度理解退化解与非退化解:

在这里插入图片描述
图(a)表示了一个三维的多面体,A点和B点显然是极点(extreme point),在这里即为基可行解,显然此时 n = 3,根据退化的定义,当某点的严格约束超过维数的时候,该解退化。在 A 点的严格约束显然已经超过了3个(共有4个严格约束),因此 A 点为退化的基可行解。对于 B 点来说,严格约束恰好只有3个,因此 B 点为非退化的基可行解。

同样对于图(b),P代表可行域,此时 n = 2,因此 E 点为非退化的基可行解,C点为退化的基可行解,而 D 点为退化的基解(不可行)。

注:在图(a)中的严格约束即为构成该点的平面数(因为 n = 3),而在图(b)中严格约束为构成该点的直线数(因为 n = 2)。

退化问题举例

考虑下面的线性规划问题:
在这里插入图片描述

基可行解 x = (2,6,0) 是一个非退化的基可行解(尝试将数值代入问题,然后观察严格不等式的数量,此时为3)。

但是基可行解 y = (4,0,2) 是一个退化的基可行解(同理,此时严格不等式的数量为4 > 3)。


2.退化问题标准型

对于一个标准形式的线性规划问题来说,总是有 m 个约束为严格约束,因此任意一个基解都至少满足 m 个严格约束,因此只需再寻找 n - m 个严格约束,即:选取 n - m 个变量,令其值为0(非基变量),我们就找到了一个基解。

我们不难得出下述定义

Definition 2.11 Consider the standard form plolyhedron P = {x
Rn | Ax = b, x ≥ 0} and let x be a basic solution.
Let m be the number of rows of A. The vector x is a
degenerate basic solution if more than n - m of the components of x are zero.

即:在标准型问题中得到的一个基解,若存在 n - m 以上个的变量的值为0,此时的解我们称其为退化解。


小节

本节内容不多,介绍了退化问题相关的基础知识,书中还有一些对于退化问题的其它探索与描述,在这里不进行详细说明,有兴趣的读者可以自行阅读对于如何消除基解或是基解的其它拓展几何性质。


参考文献

[1] Dimitris Bertsimas,John N. Tsitsiklis . Introduction to Linear Optimization[M]. 1997: 58-62

版权归原作者所有,未经原作者允许不得将本文内容用于任何商业或盈利目的,否则将视为侵权,转载或者引用本文内容请注明来源及原作者,对于不遵守此声明或者其他违法使用本文内容者,本人依法保留追究权等。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值