svmtrain和svmpredict的用法和参数含义

运用libSVM工具箱,有两个主要函数svmtrain和svmpredict,对数据进行训练和测试,可以实现多分类。

model = svmtrain(train_label,traindata, 'libsvm_options');
"libsvm_options:
	"-s SVM类型:设置SVM类型(默认0)"
	"	0 -- C-SVC		(multi-class classification)"
	"	1 -- nu-SVC		(multi-class classification)"
	"	2 -- one-class SVM"
	"	3 -- epsilon-SVR	(regression)"
	"	4 -- nu-SVR		(regression)"
	
	"-t 核函数类型: 设置核函数类型(默认是0)"
	"	0 -- 线性核函数: u'*v"
	"	1 -- 多项式核函数:(gamma*u'*v + coef0)^degree"
	"	2 -- RBF核函数:exp(-gamma*|u-v|^2)"
	"	3 -- sigmoid核函数:tanh(gamma*u'*v + coef0)"

	"-d:核函数中的degree设置(针对多项式核函数)(默认3)"
	"-g:核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/k,k为总类别数)"
	"-r:核函数中的coef0设置(针对多项式/sigmoid核函数)(默认0)"
	"-c:设置C-SVC,e-SVR和nu-SVR的参数(损失函数)(默认1)"
	"-n:设置nu-SVC,one-class SVM和nu-SVR的参数(n默认0.5)"
	"-p:设置e-SVR中损失函数的p值(默认0.1)"
	"-m:设置cache内存大小,以MB为单位(默认100)"
	"-e:设置允许的终止判据epsilon的值(默认0.001)"
	"-h:是否使用启发式,0或1(默认1)"
	"-b:是否用概率估计值训练一个SVC或SVR模型,0或1(默认0)"
	"-wi weight:设置C-SVC的第i类的参数C的权重weight*C,(默认1)"
	"-v:n-fold检验模式,n为fold的个数,必须大于等于2"
	"-q:静止模式(无输出)"
	
[predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(test_label, test_data, model, 'libsvm_options');
        "  model: SVM model structure from svmtrain."
		"  libsvm_options:"
		"-b:是否预测概率估计值,0或1,(默认0);不支持one-class SVM"
		"-q:静止模式(无输出)"
		"Returns:"
		"  predicted_label: SVM预测输出的标签"
		"  accuracy:一个向量,包括准确率,均方误差,平方相关系数"
		"  prob_estimates:如果选择,返回一个概率估计向量"

参考文献
关于libSVM的一些总结

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Radar_LFM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值