正则化为什么可以防止过拟合问题


前言

机器学习中,如果训练集太少,或者训练时间过长,则会出现过拟合现象。针对过拟合问题,我们有很多种解决方法:
1、降低module的复杂度;
2、增加更多数据集
3、早一点停止训练
4、重新清洗数据,把明显异常的数据剔除
5、正则化
6、…

方法1——方法4 根据字面意思便能理解原因。


一、什么是正则化?

正则化为什么可以防止过拟合问题,可能很多人连 “正则化” 不知道什么意思,因为正则化在很多地方都听过,比如:爬虫里面也有正则化。
所以我查了很多词典,对regularization的大多数解释是:规则化。
英语对regularization的解释是:

  1. the condition of having been made regular (or more regular)
  2. the act of bringing to uniformity; making regular

意思就是让一个原本是不规则的行为,如这里的多项式。

之所以过拟合,正是因为模型训练的太“好”了,导致我们的多项式维度很高,几乎每个数据都能用模型表示,从而导致出现的这种离实际情况相差很远的“不规则”行为,因此我们需要regular

二、模型表示

在这里插入图片描述在这里插入图片描述
这里M=9代表红色多项式的阶数是9. 可以看出这个多项式是非常负责的

三、L1 regularization

我们在原始代价函数后面增加一个L1正则项。所有参数w的绝对值的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。
在这里插入图片描述
同时计算导数:
在这里插入图片描述
上式中sgn(w)表示w的符号。那么权重w的更新规则为:
在这里插入图片描述
比原始的更新规则多出了η * λ * sgn(w)/n这一项。当w为正时,更新后的w变小。当w为负时,更新后的w变大——因此它的效果就是让w往0靠,使网络中的权重尽可能为0,也就相当于减小了网络复杂度,防止过拟合。

另外,上面没有提到一个问题,当w为0时怎么办?当w等于0时,|W|是不可导的,所以我们只能按照原始的未经正则化的方法去更新w,这就相当于去掉ηλsgn(w)/n这一项,所以我们可以规定sgn(0)=0,这样就把w=0的情况也统一进来了。(在编程的时候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)

四、L2 regularization

L2正则化就是在代价函数后面再加上一个正则化项:
在这里插入图片描述
C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。另外还有一个系数1/2,1/2经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整。

L2正则化项是怎么避免overfitting的呢?我们推导一下看看,先求导:
在这里插入图片描述
可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:
在这里插入图片描述
在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为 1−ηλ/n ,因为η、λ、n都是正的,所以 1−ηλ/n小于1,它的效果是减小w,这也就是权重衰减(weight decay)的由来。当然考虑到后面的导数项,w最终的值可能增大也可能减小。

另外,需要提一下,对于基于mini-batch的随机梯度下降,w和b更新的公式跟上面给出的有点不同:

在这里插入图片描述

对比上面w的更新公式,可以发现后面那一项变了,变成所有导数加和,乘以η再除以m,m是一个mini-batch中样本的个数。

到目前为止,我们只是解释了L2正则化项有让w“变小”的效果,但是还没解释为什么w“变小”可以防止overfitting?一个所谓“显而易见”的解释就是:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合刚刚好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。当然,对于很多人(包括我)来说,这个解释似乎不那么显而易见,所以这里添加一个稍微数学一点的解释(引自知乎):

过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

在这里插入图片描述
而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。

五、总结

正则化可以改善过拟合的主要原因是:减小了模型的系数,从而使模型的波动减少,进而没有缓解过拟合。

参考:https://www.cnblogs.com/alexanderkun/p/6922428.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值