正则化为什么可以防止过拟合

71 篇文章 4 订阅 ¥299.90 ¥399.90
本文探讨了防止过拟合的正则化方法,包括L2正则化(权重衰减)和L1正则化。L2正则化通过在损失函数中添加权重平方和的项,促使权重值减小,降低模型复杂度。L1正则化则倾向于使权重向0靠近,进一步简化模型。此外,Dropout作为一种修改神经网络结构的技巧,通过随机“删除”部分神经元来避免过拟合。这些技术在实际应用中能有效提高模型的泛化能力。
摘要由CSDN通过智能技术生成

正则化方法:防止过拟合,提高泛化能力

转载文章:https://www.cnblogs.com/alexanderkun/p/6922428.html

在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work。
在这里插入图片描述

为了防止overfitting,可以用的方法有很多,下文就将以此展开。有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:training data、validation data,testing data。这个validation data是什么?它其实就是用来避免过拟合的,在训练过程中,我们通常用它来确定一些超参数(比如根据validation data上的accuracy来确定early stopping的epoch大小、根据v

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

安替-AnTi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值