正则化可以防止过拟合的原因

本文探讨了过拟合的现象,指出其特征是训练误差极小但泛化能力弱。通过分析激活函数,特别是tanh函数,揭示了非线性特征导致过拟合的原因。正则化的目标是降低非线性,通过调整权重W和偏置b使网络输出Z更接近0。介绍了正则化的损失函数形式,并展示了在梯度下降过程中,如何通过L2范数正则化使权重w趋向于0,从而防止过拟合。L2范数因其平滑和稳定性在实践中更受欢迎。
摘要由CSDN通过智能技术生成

一、 过拟合
首先我们需要明白什么是过拟合,由下图可知,对于(2)图则是出现了非常明显的过拟合。

从图中我们可以发现过拟合的特征,具有非常强的非线性特征,几乎让训练误差接近于0。

在这里插入图片描述
二、 正则化的思路
对于正则化,我们则是想要降低这种非线性的特征。这是我们的目的,我们来观察一下我们的非线性特征产生的原因——激活函数。

我们选取tanh的函数进行分析,从图中可以看出,非线性特征需要在于当x远大于0的时候,y的结果趋向于正负一而与x的产生非线性关系。

在这里插入图片描述

而从图中可以看出,当z(横轴)接近0时,非线性特征并没有特别明显,换句话说,函数更具有线性特征。

因此我们这里采取的方案就是想要z更加接近0,以此削弱非线性特征。

而以上讨论的z则是神经网络中每一层网络通过Z[l]=W[l]A[l]+b[l]计算得来的。

若是想要Z更加接近于0,由于A是通过计算出来的,我们只可以通过优化W和b让Z更加接近于0。

至此,我们已经发现了我们的目的,即让W和b更加接近于0。

三、 正则化的实施
我们来看正则化的究竟做了什么?

J = 1 m ∑ i m L ( y ^ ( i ) , y ( i ) ) + λ 2 m ∥ w ∥ 2 J=\frac{1}{\mathrm{m}} \sum_{\mathrm{i}}^{m} L\left(\widehat{y}^{(i)}, y^{(i)}\right)+\frac{\lambda}{2 m}\|w\|^{2} J=m1imL(y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值