基于使用MindStudio完成Rosetta_Resnet34_vd模型开发

本文详述如何利用MindStudio进行Rosetta_Resnet34_vd模型的离线推理开发,涵盖从模型介绍、MindStudio配置、项目搭建、获取模型代码和数据集、模型转换到推理的全过程,最终在多个数据集上的推理精度达80.64%。
摘要由CSDN通过智能技术生成

目录

一、介绍... 2

1.1 模型介绍... 2

1.2 MindStudio介绍... 2

1.3 MindStudio配置... 3

二、MindStudio项目搭建... 5

2.1 项目创建... 5

2.2 项目配置... 9

三、获取模型代码... 13

3.1 获取源码... 13

3.2 安装依赖... 14

四、获取数据集... 16

4.1 数据集下载... 16

4.2 数据集预处理... 17

五、模型转换... 18

5.1 转onnx模型... 18

5.2 转om模型... 21

六、模型推理... 25

6.1 获取推理工具... 25

6.2 进行推理... 26

6.3 精度验证... 27

七、问题总结... 29

八、参考资料... 30

一、介绍

本文将介绍使用MindStudio进行Rosetta_Resnet34_vd模型离线推理开发,并在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,推理精度能够达到80.64%。

1.1 模型介绍

Rosetta是用于图像中文本检测和识别的大规模系统,文本识别是使用称为 CTC 的全卷积模型完成的(因为它在训练期间使用序列到序列的 CTC 损失),该模型输出字符序列。最后一个卷积层在输入词的每个图像位置预测最可能的字符。论文链接为:

https://arxiv.org/abs/1910.05085

Rosetta_Resnet34_vd是基于是PadlePaddle框架的实现,相关信息可参考官网说明:

PaddleOCR/algorithm_rec_rosetta.md at release/2.6 · PaddlePaddle/PaddleOCR · GitHub

1.2 MindStudio介绍

MindStudio提供了AI开发所需的一站式开发环境,支持模型开发、算子开发以及应用开发三个主流程中的开发任务,依靠模型可视化、算力测试、IDE本地仿真调试等功能,MindStudio能够在一个工具上就能高效便捷地完成AI应用开发。MindStudio采用了插件化扩展机制,开发者可以通过开发插件来扩展已有功能。

本文主要介绍使用MindStudio进行Rosetta_Resnet34_vd模型离线推理开发过程。

关于MindStudio的详细特性,可以通过官网查看:

昇腾社区-官网丨昇腾万里 让智能无所不及

可以通过MindStudio社区,获得帮助以及进行经验分享和交流,另外还可以参与MindStudio官方举办的各种活动:

华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云

本文参考了《使用MindStudio进行Mindx模型st-gcn开发(1)》这篇社区帖子来进行MindStudio的环境搭建,链接为:

华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云

MindStudio的安装过程可以参考官方指导手册,链接为:

昇腾社区-官网丨昇腾万里 让智能无所不及

1.3 MindStudio配置

 

初次打开MindStudio会提示是否导入配置,如上图,可以选择“Do not import settings”,点击“OK”。

 

上图为MindStudio的主界面,主要包括4个标签:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值