目录
一、介绍
本文将介绍使用MindStudio进行Rosetta_Resnet34_vd模型离线推理开发,并在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,推理精度能够达到80.64%。
1.1 模型介绍
Rosetta是用于图像中文本检测和识别的大规模系统,文本识别是使用称为 CTC 的全卷积模型完成的(因为它在训练期间使用序列到序列的 CTC 损失),该模型输出字符序列。最后一个卷积层在输入词的每个图像位置预测最可能的字符。论文链接为:
https://arxiv.org/abs/1910.05085
Rosetta_Resnet34_vd是基于是PadlePaddle框架的实现,相关信息可参考官网说明:
PaddleOCR/algorithm_rec_rosetta.md at release/2.6 · PaddlePaddle/PaddleOCR · GitHub
1.2 MindStudio介绍
MindStudio提供了AI开发所需的一站式开发环境,支持模型开发、算子开发以及应用开发三个主流程中的开发任务,依靠模型可视化、算力测试、IDE本地仿真调试等功能,MindStudio能够在一个工具上就能高效便捷地完成AI应用开发。MindStudio采用了插件化扩展机制,开发者可以通过开发插件来扩展已有功能。
本文主要介绍使用MindStudio进行Rosetta_Resnet34_vd模型离线推理开发过程。
关于MindStudio的详细特性,可以通过官网查看:
可以通过MindStudio社区,获得帮助以及进行经验分享和交流,另外还可以参与MindStudio官方举办的各种活动:
本文参考了《使用MindStudio进行Mindx模型st-gcn开发(1)》这篇社区帖子来进行MindStudio的环境搭建,链接为:
MindStudio的安装过程可以参考官方指导手册,链接为:
1.3 MindStudio配置
初次打开MindStudio会提示是否导入配置,如上图,可以选择“Do not import settings”,点击“OK”。
上图为MindStudio的主界面,主要包括4个标签: