蒙特卡洛仿真模型(球队夺冠实例解释,简单版)

本文通过建立M文件,导入数据并计算均值和标准差,利用蒙特卡洛仿真模拟16支球队的比赛,通过比较每轮比赛中两队的随机分布,确定晋级队伍,经过四轮循环得出冠军。通过对冠军的计数和循环1万次,计算夺冠概率,并绘制条形图和饼图展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)建立一个M文件,导入数据进入矩阵

filename=‘data.xls’;

A=xlsread(filename);

(2)通过矩阵记录均值和标准差

u=A(:,1);
s=A(:,2);
e=zeros(16,1) ;//负责纪录夺冠次数

(3)将标准差和均值进行整体比较,将大的数据进行记录(在模型中相当于晋级的队伍)

If

normrnd(u(c(j,m)),s(c(j,m)))>normrnd(u(c(j+1,m)),s(c(j+1,m)))
c(k,m+1)=c(j,m);
else
c(k,m+1)=c(j+1,m);

(3)根据3的公式,将此比较方式进行循环,得出每两个相邻队伍获胜的一方,再进行轮次的循环,记为m,从1到4,(16支队伍四轮比赛)

for m=1:4
k=1;
for j= 1:2:(2^(5-m)-1)(m为第几轮
(3)循环
end
k=k+1;
end

(4) 将(3)的冠军求法循环一万次,就可以得出误差比较小的答案 将每次冠军记录在矩阵中

e(c(1,5))=e(c(1,5))+1;

(5&

Matlab关于蒙特卡洛仿真资料讲义和程序举例-第二讲-第五讲.rar 看到有些同学在找这方面的资料,的确蒙特卡洛仿真在通信中的应用非常广泛,我把我现有的资料发给大家,希望对大家有用。 比较多,分成了几个压缩文件 Monte Carlo 仿真设计 一.Monte Carlo仿真方法的基本思想及其特点 Monte Carlo仿真方法又称统计试验法,它是一种采用统计抽样理论近似地求解数学、物理及工程问题的方法。它解决问题的基本思想是,首先建立与描述该问题有相似性的概率模型,然后对模型进行随机模拟或统计抽样,再利用所得的结果求出特征量的统计值作为原问题的近似解,并对解的精度作出某些估计。Monte Carlo仿真方法的主要理论基础是概率论中的大数定律,要主要手段为随机变量的抽样分析。 Monte Carlo仿真方法的特点如下: (1)Monte Carlo仿真分析是通过大量而简单的重复抽样实现的,故计算方法和程序结构都很简单; (2)收敛的概率性和收敛速度与问题的维数无关; (3)适应性强,受问题条件限制的影响较小; (4)收敛速度较慢,不宜用来解决精度要求很高的实际问题。 Monte Carlo仿真方法在实际中能否应用的关键问题之一,是能否有简便、经济和可靠的随机数产生方法。 二.随机数的产生方法     随机数的产生方法主要有三类:第一类是利用专门的随机数表;第二类为物理方法,即用物理装置产生随机数;第三类为数学方法,即用专门的运算程序在计算机上产生随机数。前两种方法由于其固有的缺陷而降低了其使用价值。最后一种数学方法是目前使用较广、发展较快的方法。下面简单介绍几种产生随机数的常用数学方法。 复制代码 Matlab1.jpg 蒙特卡洛仿真资料
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值